Online adaptive motion model-based target tracking using local search algorithm

An adaptive tracker to address the problem of tracking objects which undergo abrupt and significant motion changes is introduced. Abrupt motion of objects is an issue which makes tracking a challenging task. To address this problem, a new adaptive motion model is proposed. The model is integrated in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence 2015-01, Vol.37, p.307-318
Hauptverfasser: Karami, Amir Hossein, Hasanzadeh, Maryam, Kasaei, Shohreh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue
container_start_page 307
container_title Engineering applications of artificial intelligence
container_volume 37
creator Karami, Amir Hossein
Hasanzadeh, Maryam
Kasaei, Shohreh
description An adaptive tracker to address the problem of tracking objects which undergo abrupt and significant motion changes is introduced. Abrupt motion of objects is an issue which makes tracking a challenging task. To address this problem, a new adaptive motion model is proposed. The model is integrated into the sequential importance resampling particle filter (SIR PF), which is the most popular probabilistic tracking framework. In this model, in each time step, if necessary, the particles’ configurations are updated by using feedback information from the observation likelihood. In order to overcome the local-trap problem, local search algorithm with best improvement strategy is used to update particles’ configurations. Then, the motion model is updated online with respect to the configurations of the best particle in the current and previous time steps. By using this adaptive model, a more robust tracking is achieved to abrupt significant motion changes. The tracker is experimentally compared to other state-of-the-art trackers on BoBoT dataset. The experimental results confirm that the tracker outperforms the related trackers in many cases by having better PASCAL score. Furthermore, this tracker improves the accuracy of the conventional SIR PF approximately 15%.
doi_str_mv 10.1016/j.engappai.2014.09.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651417769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197614002383</els_id><sourcerecordid>1651417769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-a82a45e5f82ed54659517ecfa19a93a60006fde6941ece5e153ffdb45066e89b3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCihHLgl2YjvxDVTxJ1XqBc7W1t6kLm4SbLcSb0-qwpnLzmVmtPMRcstowSiT99sC-w7GEVxRUsYLqgrKmjMyY01d5bKW6pzMqBJlzlQtL8lVjFtKadVwOSOrVe9djxlYGJM7YLYbkhv6SSz6fA0RbZYgdJiyFMB8ur7L9vF4_WDAZxEhmE0GvhuCS5vdNblowUe8-dU5-Xh-el-85svVy9vicZmbiouUQ1MCFyjapkQruBRKsBpNC0yBqkBO_8nWolScoUGBTFRta9dcUCmxUetqTu5OvWMYvvYYk965aNB76HHYR82kYJzV0_jJKk9WE4YYA7Z6DG4H4Vszqo8E9Vb_EdRHgpoqPRGcgg-nIE5DDg6DjsZhb9C6gCZpO7j_Kn4AMol-aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651417769</pqid></control><display><type>article</type><title>Online adaptive motion model-based target tracking using local search algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Karami, Amir Hossein ; Hasanzadeh, Maryam ; Kasaei, Shohreh</creator><creatorcontrib>Karami, Amir Hossein ; Hasanzadeh, Maryam ; Kasaei, Shohreh</creatorcontrib><description>An adaptive tracker to address the problem of tracking objects which undergo abrupt and significant motion changes is introduced. Abrupt motion of objects is an issue which makes tracking a challenging task. To address this problem, a new adaptive motion model is proposed. The model is integrated into the sequential importance resampling particle filter (SIR PF), which is the most popular probabilistic tracking framework. In this model, in each time step, if necessary, the particles’ configurations are updated by using feedback information from the observation likelihood. In order to overcome the local-trap problem, local search algorithm with best improvement strategy is used to update particles’ configurations. Then, the motion model is updated online with respect to the configurations of the best particle in the current and previous time steps. By using this adaptive model, a more robust tracking is achieved to abrupt significant motion changes. The tracker is experimentally compared to other state-of-the-art trackers on BoBoT dataset. The experimental results confirm that the tracker outperforms the related trackers in many cases by having better PASCAL score. Furthermore, this tracker improves the accuracy of the conventional SIR PF approximately 15%.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2014.09.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Abrupt motion ; Adaptive algorithms ; Adaptive motion model ; Computer vision ; Expert systems ; Local search ; Online ; Search algorithms ; Sequential importance resampling particle filter ; Strategy ; Target tracking ; Tasks ; Tracking ; Visual tracking</subject><ispartof>Engineering applications of artificial intelligence, 2015-01, Vol.37, p.307-318</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-a82a45e5f82ed54659517ecfa19a93a60006fde6941ece5e153ffdb45066e89b3</citedby><cites>FETCH-LOGICAL-c345t-a82a45e5f82ed54659517ecfa19a93a60006fde6941ece5e153ffdb45066e89b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engappai.2014.09.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Karami, Amir Hossein</creatorcontrib><creatorcontrib>Hasanzadeh, Maryam</creatorcontrib><creatorcontrib>Kasaei, Shohreh</creatorcontrib><title>Online adaptive motion model-based target tracking using local search algorithm</title><title>Engineering applications of artificial intelligence</title><description>An adaptive tracker to address the problem of tracking objects which undergo abrupt and significant motion changes is introduced. Abrupt motion of objects is an issue which makes tracking a challenging task. To address this problem, a new adaptive motion model is proposed. The model is integrated into the sequential importance resampling particle filter (SIR PF), which is the most popular probabilistic tracking framework. In this model, in each time step, if necessary, the particles’ configurations are updated by using feedback information from the observation likelihood. In order to overcome the local-trap problem, local search algorithm with best improvement strategy is used to update particles’ configurations. Then, the motion model is updated online with respect to the configurations of the best particle in the current and previous time steps. By using this adaptive model, a more robust tracking is achieved to abrupt significant motion changes. The tracker is experimentally compared to other state-of-the-art trackers on BoBoT dataset. The experimental results confirm that the tracker outperforms the related trackers in many cases by having better PASCAL score. Furthermore, this tracker improves the accuracy of the conventional SIR PF approximately 15%.</description><subject>Abrupt motion</subject><subject>Adaptive algorithms</subject><subject>Adaptive motion model</subject><subject>Computer vision</subject><subject>Expert systems</subject><subject>Local search</subject><subject>Online</subject><subject>Search algorithms</subject><subject>Sequential importance resampling particle filter</subject><subject>Strategy</subject><subject>Target tracking</subject><subject>Tasks</subject><subject>Tracking</subject><subject>Visual tracking</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCihHLgl2YjvxDVTxJ1XqBc7W1t6kLm4SbLcSb0-qwpnLzmVmtPMRcstowSiT99sC-w7GEVxRUsYLqgrKmjMyY01d5bKW6pzMqBJlzlQtL8lVjFtKadVwOSOrVe9djxlYGJM7YLYbkhv6SSz6fA0RbZYgdJiyFMB8ur7L9vF4_WDAZxEhmE0GvhuCS5vdNblowUe8-dU5-Xh-el-85svVy9vicZmbiouUQ1MCFyjapkQruBRKsBpNC0yBqkBO_8nWolScoUGBTFRta9dcUCmxUetqTu5OvWMYvvYYk965aNB76HHYR82kYJzV0_jJKk9WE4YYA7Z6DG4H4Vszqo8E9Vb_EdRHgpoqPRGcgg-nIE5DDg6DjsZhb9C6gCZpO7j_Kn4AMol-aQ</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Karami, Amir Hossein</creator><creator>Hasanzadeh, Maryam</creator><creator>Kasaei, Shohreh</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>Online adaptive motion model-based target tracking using local search algorithm</title><author>Karami, Amir Hossein ; Hasanzadeh, Maryam ; Kasaei, Shohreh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-a82a45e5f82ed54659517ecfa19a93a60006fde6941ece5e153ffdb45066e89b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abrupt motion</topic><topic>Adaptive algorithms</topic><topic>Adaptive motion model</topic><topic>Computer vision</topic><topic>Expert systems</topic><topic>Local search</topic><topic>Online</topic><topic>Search algorithms</topic><topic>Sequential importance resampling particle filter</topic><topic>Strategy</topic><topic>Target tracking</topic><topic>Tasks</topic><topic>Tracking</topic><topic>Visual tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karami, Amir Hossein</creatorcontrib><creatorcontrib>Hasanzadeh, Maryam</creatorcontrib><creatorcontrib>Kasaei, Shohreh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karami, Amir Hossein</au><au>Hasanzadeh, Maryam</au><au>Kasaei, Shohreh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online adaptive motion model-based target tracking using local search algorithm</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2015-01</date><risdate>2015</risdate><volume>37</volume><spage>307</spage><epage>318</epage><pages>307-318</pages><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>An adaptive tracker to address the problem of tracking objects which undergo abrupt and significant motion changes is introduced. Abrupt motion of objects is an issue which makes tracking a challenging task. To address this problem, a new adaptive motion model is proposed. The model is integrated into the sequential importance resampling particle filter (SIR PF), which is the most popular probabilistic tracking framework. In this model, in each time step, if necessary, the particles’ configurations are updated by using feedback information from the observation likelihood. In order to overcome the local-trap problem, local search algorithm with best improvement strategy is used to update particles’ configurations. Then, the motion model is updated online with respect to the configurations of the best particle in the current and previous time steps. By using this adaptive model, a more robust tracking is achieved to abrupt significant motion changes. The tracker is experimentally compared to other state-of-the-art trackers on BoBoT dataset. The experimental results confirm that the tracker outperforms the related trackers in many cases by having better PASCAL score. Furthermore, this tracker improves the accuracy of the conventional SIR PF approximately 15%.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2014.09.018</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-1976
ispartof Engineering applications of artificial intelligence, 2015-01, Vol.37, p.307-318
issn 0952-1976
1873-6769
language eng
recordid cdi_proquest_miscellaneous_1651417769
source Elsevier ScienceDirect Journals Complete
subjects Abrupt motion
Adaptive algorithms
Adaptive motion model
Computer vision
Expert systems
Local search
Online
Search algorithms
Sequential importance resampling particle filter
Strategy
Target tracking
Tasks
Tracking
Visual tracking
title Online adaptive motion model-based target tracking using local search algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20adaptive%20motion%20model-based%20target%20tracking%20using%20local%20search%20algorithm&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Karami,%20Amir%20Hossein&rft.date=2015-01&rft.volume=37&rft.spage=307&rft.epage=318&rft.pages=307-318&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2014.09.018&rft_dat=%3Cproquest_cross%3E1651417769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651417769&rft_id=info:pmid/&rft_els_id=S0952197614002383&rfr_iscdi=true