Online adaptive motion model-based target tracking using local search algorithm
An adaptive tracker to address the problem of tracking objects which undergo abrupt and significant motion changes is introduced. Abrupt motion of objects is an issue which makes tracking a challenging task. To address this problem, a new adaptive motion model is proposed. The model is integrated in...
Gespeichert in:
Veröffentlicht in: | Engineering applications of artificial intelligence 2015-01, Vol.37, p.307-318 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | |
container_start_page | 307 |
container_title | Engineering applications of artificial intelligence |
container_volume | 37 |
creator | Karami, Amir Hossein Hasanzadeh, Maryam Kasaei, Shohreh |
description | An adaptive tracker to address the problem of tracking objects which undergo abrupt and significant motion changes is introduced. Abrupt motion of objects is an issue which makes tracking a challenging task. To address this problem, a new adaptive motion model is proposed. The model is integrated into the sequential importance resampling particle filter (SIR PF), which is the most popular probabilistic tracking framework. In this model, in each time step, if necessary, the particles’ configurations are updated by using feedback information from the observation likelihood. In order to overcome the local-trap problem, local search algorithm with best improvement strategy is used to update particles’ configurations. Then, the motion model is updated online with respect to the configurations of the best particle in the current and previous time steps. By using this adaptive model, a more robust tracking is achieved to abrupt significant motion changes. The tracker is experimentally compared to other state-of-the-art trackers on BoBoT dataset. The experimental results confirm that the tracker outperforms the related trackers in many cases by having better PASCAL score. Furthermore, this tracker improves the accuracy of the conventional SIR PF approximately 15%. |
doi_str_mv | 10.1016/j.engappai.2014.09.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651417769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197614002383</els_id><sourcerecordid>1651417769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-a82a45e5f82ed54659517ecfa19a93a60006fde6941ece5e153ffdb45066e89b3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCihHLgl2YjvxDVTxJ1XqBc7W1t6kLm4SbLcSb0-qwpnLzmVmtPMRcstowSiT99sC-w7GEVxRUsYLqgrKmjMyY01d5bKW6pzMqBJlzlQtL8lVjFtKadVwOSOrVe9djxlYGJM7YLYbkhv6SSz6fA0RbZYgdJiyFMB8ur7L9vF4_WDAZxEhmE0GvhuCS5vdNblowUe8-dU5-Xh-el-85svVy9vicZmbiouUQ1MCFyjapkQruBRKsBpNC0yBqkBO_8nWolScoUGBTFRta9dcUCmxUetqTu5OvWMYvvYYk965aNB76HHYR82kYJzV0_jJKk9WE4YYA7Z6DG4H4Vszqo8E9Vb_EdRHgpoqPRGcgg-nIE5DDg6DjsZhb9C6gCZpO7j_Kn4AMol-aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651417769</pqid></control><display><type>article</type><title>Online adaptive motion model-based target tracking using local search algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Karami, Amir Hossein ; Hasanzadeh, Maryam ; Kasaei, Shohreh</creator><creatorcontrib>Karami, Amir Hossein ; Hasanzadeh, Maryam ; Kasaei, Shohreh</creatorcontrib><description>An adaptive tracker to address the problem of tracking objects which undergo abrupt and significant motion changes is introduced. Abrupt motion of objects is an issue which makes tracking a challenging task. To address this problem, a new adaptive motion model is proposed. The model is integrated into the sequential importance resampling particle filter (SIR PF), which is the most popular probabilistic tracking framework. In this model, in each time step, if necessary, the particles’ configurations are updated by using feedback information from the observation likelihood. In order to overcome the local-trap problem, local search algorithm with best improvement strategy is used to update particles’ configurations. Then, the motion model is updated online with respect to the configurations of the best particle in the current and previous time steps. By using this adaptive model, a more robust tracking is achieved to abrupt significant motion changes. The tracker is experimentally compared to other state-of-the-art trackers on BoBoT dataset. The experimental results confirm that the tracker outperforms the related trackers in many cases by having better PASCAL score. Furthermore, this tracker improves the accuracy of the conventional SIR PF approximately 15%.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2014.09.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Abrupt motion ; Adaptive algorithms ; Adaptive motion model ; Computer vision ; Expert systems ; Local search ; Online ; Search algorithms ; Sequential importance resampling particle filter ; Strategy ; Target tracking ; Tasks ; Tracking ; Visual tracking</subject><ispartof>Engineering applications of artificial intelligence, 2015-01, Vol.37, p.307-318</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-a82a45e5f82ed54659517ecfa19a93a60006fde6941ece5e153ffdb45066e89b3</citedby><cites>FETCH-LOGICAL-c345t-a82a45e5f82ed54659517ecfa19a93a60006fde6941ece5e153ffdb45066e89b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engappai.2014.09.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Karami, Amir Hossein</creatorcontrib><creatorcontrib>Hasanzadeh, Maryam</creatorcontrib><creatorcontrib>Kasaei, Shohreh</creatorcontrib><title>Online adaptive motion model-based target tracking using local search algorithm</title><title>Engineering applications of artificial intelligence</title><description>An adaptive tracker to address the problem of tracking objects which undergo abrupt and significant motion changes is introduced. Abrupt motion of objects is an issue which makes tracking a challenging task. To address this problem, a new adaptive motion model is proposed. The model is integrated into the sequential importance resampling particle filter (SIR PF), which is the most popular probabilistic tracking framework. In this model, in each time step, if necessary, the particles’ configurations are updated by using feedback information from the observation likelihood. In order to overcome the local-trap problem, local search algorithm with best improvement strategy is used to update particles’ configurations. Then, the motion model is updated online with respect to the configurations of the best particle in the current and previous time steps. By using this adaptive model, a more robust tracking is achieved to abrupt significant motion changes. The tracker is experimentally compared to other state-of-the-art trackers on BoBoT dataset. The experimental results confirm that the tracker outperforms the related trackers in many cases by having better PASCAL score. Furthermore, this tracker improves the accuracy of the conventional SIR PF approximately 15%.</description><subject>Abrupt motion</subject><subject>Adaptive algorithms</subject><subject>Adaptive motion model</subject><subject>Computer vision</subject><subject>Expert systems</subject><subject>Local search</subject><subject>Online</subject><subject>Search algorithms</subject><subject>Sequential importance resampling particle filter</subject><subject>Strategy</subject><subject>Target tracking</subject><subject>Tasks</subject><subject>Tracking</subject><subject>Visual tracking</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCihHLgl2YjvxDVTxJ1XqBc7W1t6kLm4SbLcSb0-qwpnLzmVmtPMRcstowSiT99sC-w7GEVxRUsYLqgrKmjMyY01d5bKW6pzMqBJlzlQtL8lVjFtKadVwOSOrVe9djxlYGJM7YLYbkhv6SSz6fA0RbZYgdJiyFMB8ur7L9vF4_WDAZxEhmE0GvhuCS5vdNblowUe8-dU5-Xh-el-85svVy9vicZmbiouUQ1MCFyjapkQruBRKsBpNC0yBqkBO_8nWolScoUGBTFRta9dcUCmxUetqTu5OvWMYvvYYk965aNB76HHYR82kYJzV0_jJKk9WE4YYA7Z6DG4H4Vszqo8E9Vb_EdRHgpoqPRGcgg-nIE5DDg6DjsZhb9C6gCZpO7j_Kn4AMol-aQ</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Karami, Amir Hossein</creator><creator>Hasanzadeh, Maryam</creator><creator>Kasaei, Shohreh</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>Online adaptive motion model-based target tracking using local search algorithm</title><author>Karami, Amir Hossein ; Hasanzadeh, Maryam ; Kasaei, Shohreh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-a82a45e5f82ed54659517ecfa19a93a60006fde6941ece5e153ffdb45066e89b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abrupt motion</topic><topic>Adaptive algorithms</topic><topic>Adaptive motion model</topic><topic>Computer vision</topic><topic>Expert systems</topic><topic>Local search</topic><topic>Online</topic><topic>Search algorithms</topic><topic>Sequential importance resampling particle filter</topic><topic>Strategy</topic><topic>Target tracking</topic><topic>Tasks</topic><topic>Tracking</topic><topic>Visual tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karami, Amir Hossein</creatorcontrib><creatorcontrib>Hasanzadeh, Maryam</creatorcontrib><creatorcontrib>Kasaei, Shohreh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karami, Amir Hossein</au><au>Hasanzadeh, Maryam</au><au>Kasaei, Shohreh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online adaptive motion model-based target tracking using local search algorithm</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2015-01</date><risdate>2015</risdate><volume>37</volume><spage>307</spage><epage>318</epage><pages>307-318</pages><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>An adaptive tracker to address the problem of tracking objects which undergo abrupt and significant motion changes is introduced. Abrupt motion of objects is an issue which makes tracking a challenging task. To address this problem, a new adaptive motion model is proposed. The model is integrated into the sequential importance resampling particle filter (SIR PF), which is the most popular probabilistic tracking framework. In this model, in each time step, if necessary, the particles’ configurations are updated by using feedback information from the observation likelihood. In order to overcome the local-trap problem, local search algorithm with best improvement strategy is used to update particles’ configurations. Then, the motion model is updated online with respect to the configurations of the best particle in the current and previous time steps. By using this adaptive model, a more robust tracking is achieved to abrupt significant motion changes. The tracker is experimentally compared to other state-of-the-art trackers on BoBoT dataset. The experimental results confirm that the tracker outperforms the related trackers in many cases by having better PASCAL score. Furthermore, this tracker improves the accuracy of the conventional SIR PF approximately 15%.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2014.09.018</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-1976 |
ispartof | Engineering applications of artificial intelligence, 2015-01, Vol.37, p.307-318 |
issn | 0952-1976 1873-6769 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651417769 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Abrupt motion Adaptive algorithms Adaptive motion model Computer vision Expert systems Local search Online Search algorithms Sequential importance resampling particle filter Strategy Target tracking Tasks Tracking Visual tracking |
title | Online adaptive motion model-based target tracking using local search algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20adaptive%20motion%20model-based%20target%20tracking%20using%20local%20search%20algorithm&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Karami,%20Amir%20Hossein&rft.date=2015-01&rft.volume=37&rft.spage=307&rft.epage=318&rft.pages=307-318&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2014.09.018&rft_dat=%3Cproquest_cross%3E1651417769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651417769&rft_id=info:pmid/&rft_els_id=S0952197614002383&rfr_iscdi=true |