Curvilinear grids for WENO methods in astrophysical simulations
We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. W...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2014-03, Vol.185 (3), p.764-776 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 776 |
---|---|
container_issue | 3 |
container_start_page | 764 |
container_title | Computer physics communications |
container_volume | 185 |
creator | Grimm-Strele, H. Kupka, F. Muthsam, H.J. |
description | We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids. |
doi_str_mv | 10.1016/j.cpc.2013.11.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651415090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465513003986</els_id><sourcerecordid>1651415090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-f94e3ad64732e1c100d523414f14963682f0e9e308f007ce7f750b856db8d59e3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFbpJ-iANC0_iQJnYBcYy61GWZ2qYk7aT9ezKNMydL9vtY9sPYLUKCgNn9LtGDTlJAniAmAPKMzbDIyzgthThnMwCEWGRSXrIr73cAkOcln7HHxeT2pjU9VS76dqb2UWNd9LV8X0cdjVsbGqaPKj86O2wP3uiqjbzpprYaje39NbtoqtbTzV-ds8_n5cfiNV6tX94WT6tY85yPcVMK4lWdiZynhBoBaplygaJBUWY8K9IGqCQORRMu05Q3uYRNIbN6U9QyDObs7rR3cPZnIj-qznhNbVv1ZCevMJMoUEIJIYqnqHbWe0eNGpzpKndQCOooS-1UkKWOshSiCrIC83BiKPywN-SU14Z6TbVxpEdVW_MP_QtQX3D8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651415090</pqid></control><display><type>article</type><title>Curvilinear grids for WENO methods in astrophysical simulations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Grimm-Strele, H. ; Kupka, F. ; Muthsam, H.J.</creator><creatorcontrib>Grimm-Strele, H. ; Kupka, F. ; Muthsam, H.J.</creatorcontrib><description>We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2013.11.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Coordinates ; Curvilinear coordinates ; Finite difference method ; High Mach number ; Hydrodynamics ; Mapping ; Mathematical analysis ; Mathematical models ; Methods: numerical ; Numerical astrophysics ; WENO scheme</subject><ispartof>Computer physics communications, 2014-03, Vol.185 (3), p.764-776</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-f94e3ad64732e1c100d523414f14963682f0e9e308f007ce7f750b856db8d59e3</citedby><cites>FETCH-LOGICAL-c373t-f94e3ad64732e1c100d523414f14963682f0e9e308f007ce7f750b856db8d59e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2013.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Grimm-Strele, H.</creatorcontrib><creatorcontrib>Kupka, F.</creatorcontrib><creatorcontrib>Muthsam, H.J.</creatorcontrib><title>Curvilinear grids for WENO methods in astrophysical simulations</title><title>Computer physics communications</title><description>We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.</description><subject>Computer simulation</subject><subject>Coordinates</subject><subject>Curvilinear coordinates</subject><subject>Finite difference method</subject><subject>High Mach number</subject><subject>Hydrodynamics</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods: numerical</subject><subject>Numerical astrophysics</subject><subject>WENO scheme</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFbpJ-iANC0_iQJnYBcYy61GWZ2qYk7aT9ezKNMydL9vtY9sPYLUKCgNn9LtGDTlJAniAmAPKMzbDIyzgthThnMwCEWGRSXrIr73cAkOcln7HHxeT2pjU9VS76dqb2UWNd9LV8X0cdjVsbGqaPKj86O2wP3uiqjbzpprYaje39NbtoqtbTzV-ds8_n5cfiNV6tX94WT6tY85yPcVMK4lWdiZynhBoBaplygaJBUWY8K9IGqCQORRMu05Q3uYRNIbN6U9QyDObs7rR3cPZnIj-qznhNbVv1ZCevMJMoUEIJIYqnqHbWe0eNGpzpKndQCOooS-1UkKWOshSiCrIC83BiKPywN-SU14Z6TbVxpEdVW_MP_QtQX3D8</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Grimm-Strele, H.</creator><creator>Kupka, F.</creator><creator>Muthsam, H.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201403</creationdate><title>Curvilinear grids for WENO methods in astrophysical simulations</title><author>Grimm-Strele, H. ; Kupka, F. ; Muthsam, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-f94e3ad64732e1c100d523414f14963682f0e9e308f007ce7f750b856db8d59e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Coordinates</topic><topic>Curvilinear coordinates</topic><topic>Finite difference method</topic><topic>High Mach number</topic><topic>Hydrodynamics</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods: numerical</topic><topic>Numerical astrophysics</topic><topic>WENO scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm-Strele, H.</creatorcontrib><creatorcontrib>Kupka, F.</creatorcontrib><creatorcontrib>Muthsam, H.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm-Strele, H.</au><au>Kupka, F.</au><au>Muthsam, H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvilinear grids for WENO methods in astrophysical simulations</atitle><jtitle>Computer physics communications</jtitle><date>2014-03</date><risdate>2014</risdate><volume>185</volume><issue>3</issue><spage>764</spage><epage>776</epage><pages>764-776</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2013.11.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2014-03, Vol.185 (3), p.764-776 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651415090 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Computer simulation Coordinates Curvilinear coordinates Finite difference method High Mach number Hydrodynamics Mapping Mathematical analysis Mathematical models Methods: numerical Numerical astrophysics WENO scheme |
title | Curvilinear grids for WENO methods in astrophysical simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvilinear%20grids%20for%20WENO%20methods%20in%20astrophysical%20simulations&rft.jtitle=Computer%20physics%20communications&rft.au=Grimm-Strele,%20H.&rft.date=2014-03&rft.volume=185&rft.issue=3&rft.spage=764&rft.epage=776&rft.pages=764-776&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2013.11.005&rft_dat=%3Cproquest_cross%3E1651415090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651415090&rft_id=info:pmid/&rft_els_id=S0010465513003986&rfr_iscdi=true |