Curvilinear grids for WENO methods in astrophysical simulations

We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2014-03, Vol.185 (3), p.764-776
Hauptverfasser: Grimm-Strele, H., Kupka, F., Muthsam, H.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 776
container_issue 3
container_start_page 764
container_title Computer physics communications
container_volume 185
creator Grimm-Strele, H.
Kupka, F.
Muthsam, H.J.
description We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.
doi_str_mv 10.1016/j.cpc.2013.11.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651415090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465513003986</els_id><sourcerecordid>1651415090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-f94e3ad64732e1c100d523414f14963682f0e9e308f007ce7f750b856db8d59e3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFbpJ-iANC0_iQJnYBcYy61GWZ2qYk7aT9ezKNMydL9vtY9sPYLUKCgNn9LtGDTlJAniAmAPKMzbDIyzgthThnMwCEWGRSXrIr73cAkOcln7HHxeT2pjU9VS76dqb2UWNd9LV8X0cdjVsbGqaPKj86O2wP3uiqjbzpprYaje39NbtoqtbTzV-ds8_n5cfiNV6tX94WT6tY85yPcVMK4lWdiZynhBoBaplygaJBUWY8K9IGqCQORRMu05Q3uYRNIbN6U9QyDObs7rR3cPZnIj-qznhNbVv1ZCevMJMoUEIJIYqnqHbWe0eNGpzpKndQCOooS-1UkKWOshSiCrIC83BiKPywN-SU14Z6TbVxpEdVW_MP_QtQX3D8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651415090</pqid></control><display><type>article</type><title>Curvilinear grids for WENO methods in astrophysical simulations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Grimm-Strele, H. ; Kupka, F. ; Muthsam, H.J.</creator><creatorcontrib>Grimm-Strele, H. ; Kupka, F. ; Muthsam, H.J.</creatorcontrib><description>We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2013.11.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Coordinates ; Curvilinear coordinates ; Finite difference method ; High Mach number ; Hydrodynamics ; Mapping ; Mathematical analysis ; Mathematical models ; Methods: numerical ; Numerical astrophysics ; WENO scheme</subject><ispartof>Computer physics communications, 2014-03, Vol.185 (3), p.764-776</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-f94e3ad64732e1c100d523414f14963682f0e9e308f007ce7f750b856db8d59e3</citedby><cites>FETCH-LOGICAL-c373t-f94e3ad64732e1c100d523414f14963682f0e9e308f007ce7f750b856db8d59e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2013.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Grimm-Strele, H.</creatorcontrib><creatorcontrib>Kupka, F.</creatorcontrib><creatorcontrib>Muthsam, H.J.</creatorcontrib><title>Curvilinear grids for WENO methods in astrophysical simulations</title><title>Computer physics communications</title><description>We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.</description><subject>Computer simulation</subject><subject>Coordinates</subject><subject>Curvilinear coordinates</subject><subject>Finite difference method</subject><subject>High Mach number</subject><subject>Hydrodynamics</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods: numerical</subject><subject>Numerical astrophysics</subject><subject>WENO scheme</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFbpJ-iANC0_iQJnYBcYy61GWZ2qYk7aT9ezKNMydL9vtY9sPYLUKCgNn9LtGDTlJAniAmAPKMzbDIyzgthThnMwCEWGRSXrIr73cAkOcln7HHxeT2pjU9VS76dqb2UWNd9LV8X0cdjVsbGqaPKj86O2wP3uiqjbzpprYaje39NbtoqtbTzV-ds8_n5cfiNV6tX94WT6tY85yPcVMK4lWdiZynhBoBaplygaJBUWY8K9IGqCQORRMu05Q3uYRNIbN6U9QyDObs7rR3cPZnIj-qznhNbVv1ZCevMJMoUEIJIYqnqHbWe0eNGpzpKndQCOooS-1UkKWOshSiCrIC83BiKPywN-SU14Z6TbVxpEdVW_MP_QtQX3D8</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Grimm-Strele, H.</creator><creator>Kupka, F.</creator><creator>Muthsam, H.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201403</creationdate><title>Curvilinear grids for WENO methods in astrophysical simulations</title><author>Grimm-Strele, H. ; Kupka, F. ; Muthsam, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-f94e3ad64732e1c100d523414f14963682f0e9e308f007ce7f750b856db8d59e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Coordinates</topic><topic>Curvilinear coordinates</topic><topic>Finite difference method</topic><topic>High Mach number</topic><topic>Hydrodynamics</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods: numerical</topic><topic>Numerical astrophysics</topic><topic>WENO scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm-Strele, H.</creatorcontrib><creatorcontrib>Kupka, F.</creatorcontrib><creatorcontrib>Muthsam, H.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm-Strele, H.</au><au>Kupka, F.</au><au>Muthsam, H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvilinear grids for WENO methods in astrophysical simulations</atitle><jtitle>Computer physics communications</jtitle><date>2014-03</date><risdate>2014</risdate><volume>185</volume><issue>3</issue><spage>764</spage><epage>776</epage><pages>764-776</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2013.11.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2014-03, Vol.185 (3), p.764-776
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_1651415090
source ScienceDirect Journals (5 years ago - present)
subjects Computer simulation
Coordinates
Curvilinear coordinates
Finite difference method
High Mach number
Hydrodynamics
Mapping
Mathematical analysis
Mathematical models
Methods: numerical
Numerical astrophysics
WENO scheme
title Curvilinear grids for WENO methods in astrophysical simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvilinear%20grids%20for%20WENO%20methods%20in%20astrophysical%20simulations&rft.jtitle=Computer%20physics%20communications&rft.au=Grimm-Strele,%20H.&rft.date=2014-03&rft.volume=185&rft.issue=3&rft.spage=764&rft.epage=776&rft.pages=764-776&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2013.11.005&rft_dat=%3Cproquest_cross%3E1651415090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651415090&rft_id=info:pmid/&rft_els_id=S0010465513003986&rfr_iscdi=true