Electroencephalograms features of the early stage Parkinson’s disease
A new method for analyzing the time-frequency dynamics of brain’s background electrical activity is described. It is used to detect at least three main features of Parkinson’s disease (PD) in its early stages: (1) hemispheric asymmetry in the time-frequency characteristics (EEG) in the central recor...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2014-12, Vol.24 (4), p.593-604 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 604 |
---|---|
container_issue | 4 |
container_start_page | 593 |
container_title | Pattern recognition and image analysis |
container_volume | 24 |
creator | Obukhov, Yu. V. Gabova, A. V. Zaljalova, Z. A. Illarioshkin, S. N. Karabanov, A. V. Korolev, M. S. Kuznetsova, G. D. Morozov, A. A. Nigmatullina, R. R. Obukhov, K. Yu Sushkova, O. S. |
description | A new method for analyzing the time-frequency dynamics of brain’s background electrical activity is described. It is used to detect at least three main features of Parkinson’s disease (PD) in its early stages: (1) hemispheric asymmetry in the time-frequency characteristics (EEG) in the central recording areas of the motor cortex, (2) the emergence in these recording areas of EEG rhythms in the frequency range of 4–6 Hz and its relation to electromyograms (EMG) and the mechanical tremor of contralateral limbs in the case of tremor-dominant PD, and (3) the disruption of the dominant rhythm corresponding to views generally held on the disorganization of different systems in PD. |
doi_str_mv | 10.1134/S1054661814040166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651414428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3527323591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2646-1d92f1ab7d3dad19488089c26d0474cdf7350ca9ff98d2e0d6ad4624758cbfe53</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4G7AjZvRvEySySyl1CoUFNT1kCYv7dTppCbTRXf-hr_nl5hSF6K4ehfuuZfHJeQc6BVAwa-fgAouJSjglFOQ8oAMQAiRSwbsMOlk5zv_mJzEuKSUKqjYgEzGLZo-eOwMrhe69fOgVzFzqPtNwJh5l_ULzFCHdpvFXs8xe9Thtemi7z7fP2Jmm4g64ik5crqNePZ9h-Tldvw8usunD5P70c00N0xymYOtmAM9K21htYWKK0VVlTxLecmNdWUhqNGVc5WyDKmV2nLJeCmUmTkUxZBc7nvXwb9tMPb1qokG21Z36DexBimAA-dMJfTiF7r0m9Cl7xJVyKLiRcUSBXvKBB9jQFevQ7PSYVsDrXfT1n-mTRm2z8TEdnMMP5r_DX0B3797BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636394392</pqid></control><display><type>article</type><title>Electroencephalograms features of the early stage Parkinson’s disease</title><source>SpringerNature Journals</source><creator>Obukhov, Yu. V. ; Gabova, A. V. ; Zaljalova, Z. A. ; Illarioshkin, S. N. ; Karabanov, A. V. ; Korolev, M. S. ; Kuznetsova, G. D. ; Morozov, A. A. ; Nigmatullina, R. R. ; Obukhov, K. Yu ; Sushkova, O. S.</creator><creatorcontrib>Obukhov, Yu. V. ; Gabova, A. V. ; Zaljalova, Z. A. ; Illarioshkin, S. N. ; Karabanov, A. V. ; Korolev, M. S. ; Kuznetsova, G. D. ; Morozov, A. A. ; Nigmatullina, R. R. ; Obukhov, K. Yu ; Sushkova, O. S.</creatorcontrib><description>A new method for analyzing the time-frequency dynamics of brain’s background electrical activity is described. It is used to detect at least three main features of Parkinson’s disease (PD) in its early stages: (1) hemispheric asymmetry in the time-frequency characteristics (EEG) in the central recording areas of the motor cortex, (2) the emergence in these recording areas of EEG rhythms in the frequency range of 4–6 Hz and its relation to electromyograms (EMG) and the mechanical tremor of contralateral limbs in the case of tremor-dominant PD, and (3) the disruption of the dominant rhythm corresponding to views generally held on the disorganization of different systems in PD.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661814040166</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Application Problems ; Asymmetry ; Brain research ; Computer Science ; Dynamic tests ; Electrodes ; Electroencephalography ; Fourier transforms ; Frequency ranges ; Image Processing and Computer Vision ; Image processing systems ; Methods ; Motors ; Parkinson's disease ; Pathology ; Pattern Recognition ; Recording ; Rhythm ; Studies ; Tremor (Muscular contraction) ; Wavelet transforms</subject><ispartof>Pattern recognition and image analysis, 2014-12, Vol.24 (4), p.593-604</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2646-1d92f1ab7d3dad19488089c26d0474cdf7350ca9ff98d2e0d6ad4624758cbfe53</citedby><cites>FETCH-LOGICAL-c2646-1d92f1ab7d3dad19488089c26d0474cdf7350ca9ff98d2e0d6ad4624758cbfe53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661814040166$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661814040166$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Obukhov, Yu. V.</creatorcontrib><creatorcontrib>Gabova, A. V.</creatorcontrib><creatorcontrib>Zaljalova, Z. A.</creatorcontrib><creatorcontrib>Illarioshkin, S. N.</creatorcontrib><creatorcontrib>Karabanov, A. V.</creatorcontrib><creatorcontrib>Korolev, M. S.</creatorcontrib><creatorcontrib>Kuznetsova, G. D.</creatorcontrib><creatorcontrib>Morozov, A. A.</creatorcontrib><creatorcontrib>Nigmatullina, R. R.</creatorcontrib><creatorcontrib>Obukhov, K. Yu</creatorcontrib><creatorcontrib>Sushkova, O. S.</creatorcontrib><title>Electroencephalograms features of the early stage Parkinson’s disease</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>A new method for analyzing the time-frequency dynamics of brain’s background electrical activity is described. It is used to detect at least three main features of Parkinson’s disease (PD) in its early stages: (1) hemispheric asymmetry in the time-frequency characteristics (EEG) in the central recording areas of the motor cortex, (2) the emergence in these recording areas of EEG rhythms in the frequency range of 4–6 Hz and its relation to electromyograms (EMG) and the mechanical tremor of contralateral limbs in the case of tremor-dominant PD, and (3) the disruption of the dominant rhythm corresponding to views generally held on the disorganization of different systems in PD.</description><subject>Application Problems</subject><subject>Asymmetry</subject><subject>Brain research</subject><subject>Computer Science</subject><subject>Dynamic tests</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Fourier transforms</subject><subject>Frequency ranges</subject><subject>Image Processing and Computer Vision</subject><subject>Image processing systems</subject><subject>Methods</subject><subject>Motors</subject><subject>Parkinson's disease</subject><subject>Pathology</subject><subject>Pattern Recognition</subject><subject>Recording</subject><subject>Rhythm</subject><subject>Studies</subject><subject>Tremor (Muscular contraction)</subject><subject>Wavelet transforms</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEURYMoWKsf4G7AjZvRvEySySyl1CoUFNT1kCYv7dTppCbTRXf-hr_nl5hSF6K4ehfuuZfHJeQc6BVAwa-fgAouJSjglFOQ8oAMQAiRSwbsMOlk5zv_mJzEuKSUKqjYgEzGLZo-eOwMrhe69fOgVzFzqPtNwJh5l_ULzFCHdpvFXs8xe9Thtemi7z7fP2Jmm4g64ik5crqNePZ9h-Tldvw8usunD5P70c00N0xymYOtmAM9K21htYWKK0VVlTxLecmNdWUhqNGVc5WyDKmV2nLJeCmUmTkUxZBc7nvXwb9tMPb1qokG21Z36DexBimAA-dMJfTiF7r0m9Cl7xJVyKLiRcUSBXvKBB9jQFevQ7PSYVsDrXfT1n-mTRm2z8TEdnMMP5r_DX0B3797BA</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Obukhov, Yu. V.</creator><creator>Gabova, A. V.</creator><creator>Zaljalova, Z. A.</creator><creator>Illarioshkin, S. N.</creator><creator>Karabanov, A. V.</creator><creator>Korolev, M. S.</creator><creator>Kuznetsova, G. D.</creator><creator>Morozov, A. A.</creator><creator>Nigmatullina, R. R.</creator><creator>Obukhov, K. Yu</creator><creator>Sushkova, O. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20141201</creationdate><title>Electroencephalograms features of the early stage Parkinson’s disease</title><author>Obukhov, Yu. V. ; Gabova, A. V. ; Zaljalova, Z. A. ; Illarioshkin, S. N. ; Karabanov, A. V. ; Korolev, M. S. ; Kuznetsova, G. D. ; Morozov, A. A. ; Nigmatullina, R. R. ; Obukhov, K. Yu ; Sushkova, O. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2646-1d92f1ab7d3dad19488089c26d0474cdf7350ca9ff98d2e0d6ad4624758cbfe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Application Problems</topic><topic>Asymmetry</topic><topic>Brain research</topic><topic>Computer Science</topic><topic>Dynamic tests</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Fourier transforms</topic><topic>Frequency ranges</topic><topic>Image Processing and Computer Vision</topic><topic>Image processing systems</topic><topic>Methods</topic><topic>Motors</topic><topic>Parkinson's disease</topic><topic>Pathology</topic><topic>Pattern Recognition</topic><topic>Recording</topic><topic>Rhythm</topic><topic>Studies</topic><topic>Tremor (Muscular contraction)</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obukhov, Yu. V.</creatorcontrib><creatorcontrib>Gabova, A. V.</creatorcontrib><creatorcontrib>Zaljalova, Z. A.</creatorcontrib><creatorcontrib>Illarioshkin, S. N.</creatorcontrib><creatorcontrib>Karabanov, A. V.</creatorcontrib><creatorcontrib>Korolev, M. S.</creatorcontrib><creatorcontrib>Kuznetsova, G. D.</creatorcontrib><creatorcontrib>Morozov, A. A.</creatorcontrib><creatorcontrib>Nigmatullina, R. R.</creatorcontrib><creatorcontrib>Obukhov, K. Yu</creatorcontrib><creatorcontrib>Sushkova, O. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obukhov, Yu. V.</au><au>Gabova, A. V.</au><au>Zaljalova, Z. A.</au><au>Illarioshkin, S. N.</au><au>Karabanov, A. V.</au><au>Korolev, M. S.</au><au>Kuznetsova, G. D.</au><au>Morozov, A. A.</au><au>Nigmatullina, R. R.</au><au>Obukhov, K. Yu</au><au>Sushkova, O. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroencephalograms features of the early stage Parkinson’s disease</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>24</volume><issue>4</issue><spage>593</spage><epage>604</epage><pages>593-604</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>A new method for analyzing the time-frequency dynamics of brain’s background electrical activity is described. It is used to detect at least three main features of Parkinson’s disease (PD) in its early stages: (1) hemispheric asymmetry in the time-frequency characteristics (EEG) in the central recording areas of the motor cortex, (2) the emergence in these recording areas of EEG rhythms in the frequency range of 4–6 Hz and its relation to electromyograms (EMG) and the mechanical tremor of contralateral limbs in the case of tremor-dominant PD, and (3) the disruption of the dominant rhythm corresponding to views generally held on the disorganization of different systems in PD.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661814040166</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6618 |
ispartof | Pattern recognition and image analysis, 2014-12, Vol.24 (4), p.593-604 |
issn | 1054-6618 1555-6212 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651414428 |
source | SpringerNature Journals |
subjects | Application Problems Asymmetry Brain research Computer Science Dynamic tests Electrodes Electroencephalography Fourier transforms Frequency ranges Image Processing and Computer Vision Image processing systems Methods Motors Parkinson's disease Pathology Pattern Recognition Recording Rhythm Studies Tremor (Muscular contraction) Wavelet transforms |
title | Electroencephalograms features of the early stage Parkinson’s disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroencephalograms%20features%20of%20the%20early%20stage%20Parkinson%E2%80%99s%20disease&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Obukhov,%20Yu.%20V.&rft.date=2014-12-01&rft.volume=24&rft.issue=4&rft.spage=593&rft.epage=604&rft.pages=593-604&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661814040166&rft_dat=%3Cproquest_cross%3E3527323591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1636394392&rft_id=info:pmid/&rfr_iscdi=true |