Robust sliding mode control for a class of nonlinear systems using inertial delay control

This paper proposes a robust sliding mode control strategy for an uncertain nonlinear system subjected to time-varying disturbance. The class of system considered includes state-dependent nonlinearity in the input vector (in addition to the plant matrix). The control scheme uses inertial delay contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2014-11, Vol.78 (3), p.1921-1932
Hauptverfasser: Suryawanshi, Prasheel V., Shendge, Pramod D., Phadke, S. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1932
container_issue 3
container_start_page 1921
container_title Nonlinear dynamics
container_volume 78
creator Suryawanshi, Prasheel V.
Shendge, Pramod D.
Phadke, S. B.
description This paper proposes a robust sliding mode control strategy for an uncertain nonlinear system subjected to time-varying disturbance. The class of system considered includes state-dependent nonlinearity in the input vector (in addition to the plant matrix). The control scheme uses inertial delay control to estimate the lumped uncertainty. The proposed control enforces sliding without using the discontinuous control and without requiring the knowledge of uncertainties or their bounds. The overall stability of the system is proved. The effectiveness of the proposed strategy is verified for model following and robust performance, by simulation of an illustrative example and an application to inverted pendulum system.
doi_str_mv 10.1007/s11071-014-1569-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651412986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259423238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3ee66f3696ca2f2783237127c812020a025c6166ae4c0357cd00355aa8fccf013</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAi5fVmWQ3uzlK8QsEQRTqKcQ0W7akm5rZPfTfm1JFEDwNDM_zzvAydo5whQD1NSFCjQVgWWCldKEP2ASrWhZC6fkhm4AWZQEa5sfshGgFAFJAM2HvL_FjpIFT6BZdv-TruPDcxX5IMfA2Jm65C5aIx5b3sQ9d723itKXBr4mPtHPyLg2dDXzhg93-2KfsqLWB_Nn3nLK3u9vX2UPx9Hz_OLt5Kpws9VBI75VqpdLKWdGKupFC1ihq16AAARZE5RQqZX3pQFa1W-TXq8rapnWuBZRTdrnP3aT4OXoazLoj50OwvY8jGVQVlih0ozJ68QddxTH1-TsjRKVLkW83mcI95VIkSr41m9StbdoaBLMr2-zLNrlssyvb6OyIvUOZ7Zc-_Sb_L30B6uCBOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259423238</pqid></control><display><type>article</type><title>Robust sliding mode control for a class of nonlinear systems using inertial delay control</title><source>SpringerLink Journals - AutoHoldings</source><creator>Suryawanshi, Prasheel V. ; Shendge, Pramod D. ; Phadke, S. B.</creator><creatorcontrib>Suryawanshi, Prasheel V. ; Shendge, Pramod D. ; Phadke, S. B.</creatorcontrib><description>This paper proposes a robust sliding mode control strategy for an uncertain nonlinear system subjected to time-varying disturbance. The class of system considered includes state-dependent nonlinearity in the input vector (in addition to the plant matrix). The control scheme uses inertial delay control to estimate the lumped uncertainty. The proposed control enforces sliding without using the discontinuous control and without requiring the knowledge of uncertainties or their bounds. The overall stability of the system is proved. The effectiveness of the proposed strategy is verified for model following and robust performance, by simulation of an illustrative example and an application to inverted pendulum system.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-014-1569-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Computer simulation ; Control ; Delay ; Dynamical Systems ; Engineering ; Inertial ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Mechanical Engineering ; Nonlinear dynamics ; Nonlinear systems ; Nonlinearity ; Original Paper ; Pendulums ; Robust control ; Sliding mode control ; Strategy ; Uncertainty ; Vibration</subject><ispartof>Nonlinear dynamics, 2014-11, Vol.78 (3), p.1921-1932</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3ee66f3696ca2f2783237127c812020a025c6166ae4c0357cd00355aa8fccf013</citedby><cites>FETCH-LOGICAL-c349t-3ee66f3696ca2f2783237127c812020a025c6166ae4c0357cd00355aa8fccf013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-014-1569-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-014-1569-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Suryawanshi, Prasheel V.</creatorcontrib><creatorcontrib>Shendge, Pramod D.</creatorcontrib><creatorcontrib>Phadke, S. B.</creatorcontrib><title>Robust sliding mode control for a class of nonlinear systems using inertial delay control</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper proposes a robust sliding mode control strategy for an uncertain nonlinear system subjected to time-varying disturbance. The class of system considered includes state-dependent nonlinearity in the input vector (in addition to the plant matrix). The control scheme uses inertial delay control to estimate the lumped uncertainty. The proposed control enforces sliding without using the discontinuous control and without requiring the knowledge of uncertainties or their bounds. The overall stability of the system is proved. The effectiveness of the proposed strategy is verified for model following and robust performance, by simulation of an illustrative example and an application to inverted pendulum system.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Delay</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Inertial</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Pendulums</subject><subject>Robust control</subject><subject>Sliding mode control</subject><subject>Strategy</subject><subject>Uncertainty</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAi5fVmWQ3uzlK8QsEQRTqKcQ0W7akm5rZPfTfm1JFEDwNDM_zzvAydo5whQD1NSFCjQVgWWCldKEP2ASrWhZC6fkhm4AWZQEa5sfshGgFAFJAM2HvL_FjpIFT6BZdv-TruPDcxX5IMfA2Jm65C5aIx5b3sQ9d723itKXBr4mPtHPyLg2dDXzhg93-2KfsqLWB_Nn3nLK3u9vX2UPx9Hz_OLt5Kpws9VBI75VqpdLKWdGKupFC1ihq16AAARZE5RQqZX3pQFa1W-TXq8rapnWuBZRTdrnP3aT4OXoazLoj50OwvY8jGVQVlih0ozJ68QddxTH1-TsjRKVLkW83mcI95VIkSr41m9StbdoaBLMr2-zLNrlssyvb6OyIvUOZ7Zc-_Sb_L30B6uCBOA</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Suryawanshi, Prasheel V.</creator><creator>Shendge, Pramod D.</creator><creator>Phadke, S. B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141101</creationdate><title>Robust sliding mode control for a class of nonlinear systems using inertial delay control</title><author>Suryawanshi, Prasheel V. ; Shendge, Pramod D. ; Phadke, S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3ee66f3696ca2f2783237127c812020a025c6166ae4c0357cd00355aa8fccf013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Delay</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Inertial</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Pendulums</topic><topic>Robust control</topic><topic>Sliding mode control</topic><topic>Strategy</topic><topic>Uncertainty</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suryawanshi, Prasheel V.</creatorcontrib><creatorcontrib>Shendge, Pramod D.</creatorcontrib><creatorcontrib>Phadke, S. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suryawanshi, Prasheel V.</au><au>Shendge, Pramod D.</au><au>Phadke, S. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust sliding mode control for a class of nonlinear systems using inertial delay control</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>78</volume><issue>3</issue><spage>1921</spage><epage>1932</epage><pages>1921-1932</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper proposes a robust sliding mode control strategy for an uncertain nonlinear system subjected to time-varying disturbance. The class of system considered includes state-dependent nonlinearity in the input vector (in addition to the plant matrix). The control scheme uses inertial delay control to estimate the lumped uncertainty. The proposed control enforces sliding without using the discontinuous control and without requiring the knowledge of uncertainties or their bounds. The overall stability of the system is proved. The effectiveness of the proposed strategy is verified for model following and robust performance, by simulation of an illustrative example and an application to inverted pendulum system.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-014-1569-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2014-11, Vol.78 (3), p.1921-1932
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1651412986
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Classical Mechanics
Computer simulation
Control
Delay
Dynamical Systems
Engineering
Inertial
Mathematical analysis
Matrix algebra
Matrix methods
Mechanical Engineering
Nonlinear dynamics
Nonlinear systems
Nonlinearity
Original Paper
Pendulums
Robust control
Sliding mode control
Strategy
Uncertainty
Vibration
title Robust sliding mode control for a class of nonlinear systems using inertial delay control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20sliding%20mode%20control%20for%20a%20class%20of%20nonlinear%20systems%20using%20inertial%20delay%20control&rft.jtitle=Nonlinear%20dynamics&rft.au=Suryawanshi,%20Prasheel%20V.&rft.date=2014-11-01&rft.volume=78&rft.issue=3&rft.spage=1921&rft.epage=1932&rft.pages=1921-1932&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-014-1569-9&rft_dat=%3Cproquest_cross%3E2259423238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259423238&rft_id=info:pmid/&rfr_iscdi=true