Structural features of fumed silica and alumina alone, blend powders and fumed binary systems

Fumed silica, initial alumina blend, after mechanochemical activation (MCA), and fumed binary silica/alumina (SA) were studied using infrared spectroscopy, X-ray diffraction (XRD), ultrasoft X-ray emission (USXE) spectroscopy (giving emission bands Si Lα, Al Lα and O Kα related to valence electron t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids 2014-11, Vol.403, p.30-37
Hauptverfasser: Gun'ko, V.М., Ilkiv, V.Ya, Zaulychnyy, Ya.V., Zarko, V.I., Pakhlov, E.M., Karpetz, М.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue
container_start_page 30
container_title Journal of non-crystalline solids
container_volume 403
creator Gun'ko, V.М.
Ilkiv, V.Ya
Zaulychnyy, Ya.V.
Zarko, V.I.
Pakhlov, E.M.
Karpetz, М.V.
description Fumed silica, initial alumina blend, after mechanochemical activation (MCA), and fumed binary silica/alumina (SA) were studied using infrared spectroscopy, X-ray diffraction (XRD), ultrasoft X-ray emission (USXE) spectroscopy (giving emission bands Si Lα, Al Lα and O Kα related to valence electron transfer onto core levels) and quantum chemistry. The MCA influence on nanoparticle characteristics (sizes, electronic structure) increases with increasing alumina content in the blends due to stronger abrasive effect of alumina nanocrystallites (snagging a surface layer of nanoparticles during MCA) than non-crystalline silica nanoparticles. A difference in Si Lα, Al Lα and O Kα affected by MCA increases with increasing alumina content. It is greater for the top peak of the upper valence band (UVB) than for a lower energy peak in the bottom of the UVB. These spectral changes suggest redistribution of electron density between Si, Al and O atoms depending on alumina content, material type and treatment conditions. The main difference in the properties of the SA blends and binary SA is due to distribution of Si atoms in alumina phase and Al atoms in silica phase in fumed SA (which is amorphous at CAl2O3≤30wt.%) in contrast to the SA blends with practically separated silica and alumina nanoparticles. •Mechanochemical activation effects on morphology and electronic structure of nanooxides•Abrasive effects of alumina nanocrystallites are stronger than those of silica nanoparticles.•Mechanochemical activation results in decrease in size of silica and alumina nanoparticles.
doi_str_mv 10.1016/j.jnoncrysol.2014.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651412647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309314002841</els_id><sourcerecordid>1651412647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-19fd1fc971378ea33e1202718094b13eec52abb420e6be9162cfbb2c66cc471b3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EEkvpf8gFiQNJPXY2do5QUahUiQP0WFm2M5a8cuLFk4D239dlKzgylxmNnnc-XsYa4B1wGK4O3WHJiy8nyqkTHPqOq45zeMF2oJVsew3iJdtxLkQr-ShfszdEB15DSb1jD9_Xsvl1KzY1AW0tkJocmrDNODUUU_S2scvU2LTNcal1ygt-aFzC2jzm3xMW-gOcFa4y5dTQiVac6S17FWwivHzOF-z-5vOP66_t3bcvt9cf71ovNawtjGGC4EcFUmm0UiIILhRoPvYOJKLfC-tcLzgODkcYhA_OCT8M3vcKnLxg789zjyX_3JBWM0fymJJdMG9kYNhDD2LoVUX1GfUlExUM5ljiXG82wM2To-Zg_jlqnhw1XJnqaJW-e95iydsUil18pL96oZXSw7iv3Kczh_XlXxGLIR9x8TjFgn41U47_X_YIYHWS2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651412647</pqid></control><display><type>article</type><title>Structural features of fumed silica and alumina alone, blend powders and fumed binary systems</title><source>Elsevier ScienceDirect Journals</source><creator>Gun'ko, V.М. ; Ilkiv, V.Ya ; Zaulychnyy, Ya.V. ; Zarko, V.I. ; Pakhlov, E.M. ; Karpetz, М.V.</creator><creatorcontrib>Gun'ko, V.М. ; Ilkiv, V.Ya ; Zaulychnyy, Ya.V. ; Zarko, V.I. ; Pakhlov, E.M. ; Karpetz, М.V.</creatorcontrib><description>Fumed silica, initial alumina blend, after mechanochemical activation (MCA), and fumed binary silica/alumina (SA) were studied using infrared spectroscopy, X-ray diffraction (XRD), ultrasoft X-ray emission (USXE) spectroscopy (giving emission bands Si Lα, Al Lα and O Kα related to valence electron transfer onto core levels) and quantum chemistry. The MCA influence on nanoparticle characteristics (sizes, electronic structure) increases with increasing alumina content in the blends due to stronger abrasive effect of alumina nanocrystallites (snagging a surface layer of nanoparticles during MCA) than non-crystalline silica nanoparticles. A difference in Si Lα, Al Lα and O Kα affected by MCA increases with increasing alumina content. It is greater for the top peak of the upper valence band (UVB) than for a lower energy peak in the bottom of the UVB. These spectral changes suggest redistribution of electron density between Si, Al and O atoms depending on alumina content, material type and treatment conditions. The main difference in the properties of the SA blends and binary SA is due to distribution of Si atoms in alumina phase and Al atoms in silica phase in fumed SA (which is amorphous at CAl2O3≤30wt.%) in contrast to the SA blends with practically separated silica and alumina nanoparticles. •Mechanochemical activation effects on morphology and electronic structure of nanooxides•Abrasive effects of alumina nanocrystallites are stronger than those of silica nanoparticles.•Mechanochemical activation results in decrease in size of silica and alumina nanoparticles.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2014.07.001</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Aluminum ; Aluminum oxide ; Blends ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electron states ; Electronic structure ; Emission analysis ; Exact sciences and technology ; Materials science ; Materials synthesis; materials processing ; Methods of electronic structure calculations ; Nanoalumina ; Nanocrystalline materials ; Nanoparticles ; Nanopowders ; Nanoscale materials and structures: fabrication and characterization ; Nanosilica ; Physics ; Quantum chemistry ; Silica/alumina ; Silicon ; Silicon dioxide ; Ultra-soft X-ray emission spectroscopy</subject><ispartof>Journal of non-crystalline solids, 2014-11, Vol.403, p.30-37</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-19fd1fc971378ea33e1202718094b13eec52abb420e6be9162cfbb2c66cc471b3</citedby><cites>FETCH-LOGICAL-c381t-19fd1fc971378ea33e1202718094b13eec52abb420e6be9162cfbb2c66cc471b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022309314002841$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28778695$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gun'ko, V.М.</creatorcontrib><creatorcontrib>Ilkiv, V.Ya</creatorcontrib><creatorcontrib>Zaulychnyy, Ya.V.</creatorcontrib><creatorcontrib>Zarko, V.I.</creatorcontrib><creatorcontrib>Pakhlov, E.M.</creatorcontrib><creatorcontrib>Karpetz, М.V.</creatorcontrib><title>Structural features of fumed silica and alumina alone, blend powders and fumed binary systems</title><title>Journal of non-crystalline solids</title><description>Fumed silica, initial alumina blend, after mechanochemical activation (MCA), and fumed binary silica/alumina (SA) were studied using infrared spectroscopy, X-ray diffraction (XRD), ultrasoft X-ray emission (USXE) spectroscopy (giving emission bands Si Lα, Al Lα and O Kα related to valence electron transfer onto core levels) and quantum chemistry. The MCA influence on nanoparticle characteristics (sizes, electronic structure) increases with increasing alumina content in the blends due to stronger abrasive effect of alumina nanocrystallites (snagging a surface layer of nanoparticles during MCA) than non-crystalline silica nanoparticles. A difference in Si Lα, Al Lα and O Kα affected by MCA increases with increasing alumina content. It is greater for the top peak of the upper valence band (UVB) than for a lower energy peak in the bottom of the UVB. These spectral changes suggest redistribution of electron density between Si, Al and O atoms depending on alumina content, material type and treatment conditions. The main difference in the properties of the SA blends and binary SA is due to distribution of Si atoms in alumina phase and Al atoms in silica phase in fumed SA (which is amorphous at CAl2O3≤30wt.%) in contrast to the SA blends with practically separated silica and alumina nanoparticles. •Mechanochemical activation effects on morphology and electronic structure of nanooxides•Abrasive effects of alumina nanocrystallites are stronger than those of silica nanoparticles.•Mechanochemical activation results in decrease in size of silica and alumina nanoparticles.</description><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Blends</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Emission analysis</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Methods of electronic structure calculations</subject><subject>Nanoalumina</subject><subject>Nanocrystalline materials</subject><subject>Nanoparticles</subject><subject>Nanopowders</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanosilica</subject><subject>Physics</subject><subject>Quantum chemistry</subject><subject>Silica/alumina</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Ultra-soft X-ray emission spectroscopy</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EEkvpf8gFiQNJPXY2do5QUahUiQP0WFm2M5a8cuLFk4D239dlKzgylxmNnnc-XsYa4B1wGK4O3WHJiy8nyqkTHPqOq45zeMF2oJVsew3iJdtxLkQr-ShfszdEB15DSb1jD9_Xsvl1KzY1AW0tkJocmrDNODUUU_S2scvU2LTNcal1ygt-aFzC2jzm3xMW-gOcFa4y5dTQiVac6S17FWwivHzOF-z-5vOP66_t3bcvt9cf71ovNawtjGGC4EcFUmm0UiIILhRoPvYOJKLfC-tcLzgODkcYhA_OCT8M3vcKnLxg789zjyX_3JBWM0fymJJdMG9kYNhDD2LoVUX1GfUlExUM5ljiXG82wM2To-Zg_jlqnhw1XJnqaJW-e95iydsUil18pL96oZXSw7iv3Kczh_XlXxGLIR9x8TjFgn41U47_X_YIYHWS2w</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Gun'ko, V.М.</creator><creator>Ilkiv, V.Ya</creator><creator>Zaulychnyy, Ya.V.</creator><creator>Zarko, V.I.</creator><creator>Pakhlov, E.M.</creator><creator>Karpetz, М.V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Structural features of fumed silica and alumina alone, blend powders and fumed binary systems</title><author>Gun'ko, V.М. ; Ilkiv, V.Ya ; Zaulychnyy, Ya.V. ; Zarko, V.I. ; Pakhlov, E.M. ; Karpetz, М.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-19fd1fc971378ea33e1202718094b13eec52abb420e6be9162cfbb2c66cc471b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Blends</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Emission analysis</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Methods of electronic structure calculations</topic><topic>Nanoalumina</topic><topic>Nanocrystalline materials</topic><topic>Nanoparticles</topic><topic>Nanopowders</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanosilica</topic><topic>Physics</topic><topic>Quantum chemistry</topic><topic>Silica/alumina</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Ultra-soft X-ray emission spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gun'ko, V.М.</creatorcontrib><creatorcontrib>Ilkiv, V.Ya</creatorcontrib><creatorcontrib>Zaulychnyy, Ya.V.</creatorcontrib><creatorcontrib>Zarko, V.I.</creatorcontrib><creatorcontrib>Pakhlov, E.M.</creatorcontrib><creatorcontrib>Karpetz, М.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gun'ko, V.М.</au><au>Ilkiv, V.Ya</au><au>Zaulychnyy, Ya.V.</au><au>Zarko, V.I.</au><au>Pakhlov, E.M.</au><au>Karpetz, М.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural features of fumed silica and alumina alone, blend powders and fumed binary systems</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>403</volume><spage>30</spage><epage>37</epage><pages>30-37</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>Fumed silica, initial alumina blend, after mechanochemical activation (MCA), and fumed binary silica/alumina (SA) were studied using infrared spectroscopy, X-ray diffraction (XRD), ultrasoft X-ray emission (USXE) spectroscopy (giving emission bands Si Lα, Al Lα and O Kα related to valence electron transfer onto core levels) and quantum chemistry. The MCA influence on nanoparticle characteristics (sizes, electronic structure) increases with increasing alumina content in the blends due to stronger abrasive effect of alumina nanocrystallites (snagging a surface layer of nanoparticles during MCA) than non-crystalline silica nanoparticles. A difference in Si Lα, Al Lα and O Kα affected by MCA increases with increasing alumina content. It is greater for the top peak of the upper valence band (UVB) than for a lower energy peak in the bottom of the UVB. These spectral changes suggest redistribution of electron density between Si, Al and O atoms depending on alumina content, material type and treatment conditions. The main difference in the properties of the SA blends and binary SA is due to distribution of Si atoms in alumina phase and Al atoms in silica phase in fumed SA (which is amorphous at CAl2O3≤30wt.%) in contrast to the SA blends with practically separated silica and alumina nanoparticles. •Mechanochemical activation effects on morphology and electronic structure of nanooxides•Abrasive effects of alumina nanocrystallites are stronger than those of silica nanoparticles.•Mechanochemical activation results in decrease in size of silica and alumina nanoparticles.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2014.07.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2014-11, Vol.403, p.30-37
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_1651412647
source Elsevier ScienceDirect Journals
subjects Aluminum
Aluminum oxide
Blends
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electron states
Electronic structure
Emission analysis
Exact sciences and technology
Materials science
Materials synthesis
materials processing
Methods of electronic structure calculations
Nanoalumina
Nanocrystalline materials
Nanoparticles
Nanopowders
Nanoscale materials and structures: fabrication and characterization
Nanosilica
Physics
Quantum chemistry
Silica/alumina
Silicon
Silicon dioxide
Ultra-soft X-ray emission spectroscopy
title Structural features of fumed silica and alumina alone, blend powders and fumed binary systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20features%20of%20fumed%20silica%20and%20alumina%20alone,%20blend%20powders%20and%20fumed%20binary%20systems&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Gun'ko,%20V.%D0%9C.&rft.date=2014-11-01&rft.volume=403&rft.spage=30&rft.epage=37&rft.pages=30-37&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2014.07.001&rft_dat=%3Cproquest_cross%3E1651412647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651412647&rft_id=info:pmid/&rft_els_id=S0022309314002841&rfr_iscdi=true