Averaging along foliated Lévy diffusions

This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Lévy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2015-01, Vol.112, p.1-14
Hauptverfasser: Högele, Michael, Ruffino, Paulo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Nonlinear analysis
container_volume 112
creator Högele, Michael
Ruffino, Paulo
description This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Lévy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost surely. Under a generic ergodicity assumption for each leaf, we determine the effective behaviour of the system subject to a small smooth perturbation of order ε>0, which acts transversal to the leaves. The main result states that, on average, the transversal component of the perturbed SDE converges uniformly to the solution of a deterministic ODE as ε tends to zero. This transversal ODE is generated by the average of the perturbing vector field with respect to the invariant measures of the unperturbed system and varies with the transversal height of the leaves. We give upper bounds for the rates of convergence and illustrate these results for the random rotations on the circle. This article complements the results by Gonzales and Ruffino for SDEs of Stratonovich type to general Lévy driven SDEs of Marcus type.
doi_str_mv 10.1016/j.na.2014.09.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651412095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X14002880</els_id><sourcerecordid>1651412095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-734d0e73ba92e57ab94f1d1d923be277896c20c807aef7ecf977d7a5a4f384e03</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKt7l13qYsabn0km7kqxKhTcKLgLaXJTUqYzNZkW-kg-hy_mlLp1c-7mfBfOR8gthZIClQ_rsrUlAypK0CWAPCMjWiteVIxW52QEXLKiEvLzklzlvAYAqrgckfvpHpNdxXY1sU03ZOiaaHv0k8XP9_4w8TGEXY5dm6_JRbBNxpu_OyYf86f32UuxeHt-nU0XheNS94XiwgMqvrSaYaXsUotAPfWa8SUypWotHQNXg7IYFLqglfLKVlYEXgsEPiZ3p7_b1H3tMPdmE7PDprEtdrtsqKyooAx0NVThVHWpyzlhMNsUNzYdDAVztGLWprXmaMWANoOVAXk8IThM2EdMJruIrUMfE7re-C7-D_8CH3xpKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651412095</pqid></control><display><type>article</type><title>Averaging along foliated Lévy diffusions</title><source>Elsevier ScienceDirect Journals</source><creator>Högele, Michael ; Ruffino, Paulo</creator><creatorcontrib>Högele, Michael ; Ruffino, Paulo</creatorcontrib><description>This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Lévy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost surely. Under a generic ergodicity assumption for each leaf, we determine the effective behaviour of the system subject to a small smooth perturbation of order ε&gt;0, which acts transversal to the leaves. The main result states that, on average, the transversal component of the perturbed SDE converges uniformly to the solution of a deterministic ODE as ε tends to zero. This transversal ODE is generated by the average of the perturbing vector field with respect to the invariant measures of the unperturbed system and varies with the transversal height of the leaves. We give upper bounds for the rates of convergence and illustrate these results for the random rotations on the circle. This article complements the results by Gonzales and Ruffino for SDEs of Stratonovich type to general Lévy driven SDEs of Marcus type.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2014.09.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Averaging principle ; Complement ; Convergence ; Diffusion ; Dynamic tests ; Fields (mathematics) ; Foliated spaces ; Invariants ; Lévy diffusions on manifolds ; Manifolds ; Marcus canonical equation ; Perturbation methods ; Perturbation theory ; Stochastic geometry ; Stochastic Hamiltonian</subject><ispartof>Nonlinear analysis, 2015-01, Vol.112, p.1-14</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-734d0e73ba92e57ab94f1d1d923be277896c20c807aef7ecf977d7a5a4f384e03</citedby><cites>FETCH-LOGICAL-c369t-734d0e73ba92e57ab94f1d1d923be277896c20c807aef7ecf977d7a5a4f384e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X14002880$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Högele, Michael</creatorcontrib><creatorcontrib>Ruffino, Paulo</creatorcontrib><title>Averaging along foliated Lévy diffusions</title><title>Nonlinear analysis</title><description>This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Lévy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost surely. Under a generic ergodicity assumption for each leaf, we determine the effective behaviour of the system subject to a small smooth perturbation of order ε&gt;0, which acts transversal to the leaves. The main result states that, on average, the transversal component of the perturbed SDE converges uniformly to the solution of a deterministic ODE as ε tends to zero. This transversal ODE is generated by the average of the perturbing vector field with respect to the invariant measures of the unperturbed system and varies with the transversal height of the leaves. We give upper bounds for the rates of convergence and illustrate these results for the random rotations on the circle. This article complements the results by Gonzales and Ruffino for SDEs of Stratonovich type to general Lévy driven SDEs of Marcus type.</description><subject>Averaging principle</subject><subject>Complement</subject><subject>Convergence</subject><subject>Diffusion</subject><subject>Dynamic tests</subject><subject>Fields (mathematics)</subject><subject>Foliated spaces</subject><subject>Invariants</subject><subject>Lévy diffusions on manifolds</subject><subject>Manifolds</subject><subject>Marcus canonical equation</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Stochastic geometry</subject><subject>Stochastic Hamiltonian</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKt7l13qYsabn0km7kqxKhTcKLgLaXJTUqYzNZkW-kg-hy_mlLp1c-7mfBfOR8gthZIClQ_rsrUlAypK0CWAPCMjWiteVIxW52QEXLKiEvLzklzlvAYAqrgckfvpHpNdxXY1sU03ZOiaaHv0k8XP9_4w8TGEXY5dm6_JRbBNxpu_OyYf86f32UuxeHt-nU0XheNS94XiwgMqvrSaYaXsUotAPfWa8SUypWotHQNXg7IYFLqglfLKVlYEXgsEPiZ3p7_b1H3tMPdmE7PDprEtdrtsqKyooAx0NVThVHWpyzlhMNsUNzYdDAVztGLWprXmaMWANoOVAXk8IThM2EdMJruIrUMfE7re-C7-D_8CH3xpKw</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Högele, Michael</creator><creator>Ruffino, Paulo</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>Averaging along foliated Lévy diffusions</title><author>Högele, Michael ; Ruffino, Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-734d0e73ba92e57ab94f1d1d923be277896c20c807aef7ecf977d7a5a4f384e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Averaging principle</topic><topic>Complement</topic><topic>Convergence</topic><topic>Diffusion</topic><topic>Dynamic tests</topic><topic>Fields (mathematics)</topic><topic>Foliated spaces</topic><topic>Invariants</topic><topic>Lévy diffusions on manifolds</topic><topic>Manifolds</topic><topic>Marcus canonical equation</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Stochastic geometry</topic><topic>Stochastic Hamiltonian</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Högele, Michael</creatorcontrib><creatorcontrib>Ruffino, Paulo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Högele, Michael</au><au>Ruffino, Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Averaging along foliated Lévy diffusions</atitle><jtitle>Nonlinear analysis</jtitle><date>2015-01</date><risdate>2015</risdate><volume>112</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Lévy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost surely. Under a generic ergodicity assumption for each leaf, we determine the effective behaviour of the system subject to a small smooth perturbation of order ε&gt;0, which acts transversal to the leaves. The main result states that, on average, the transversal component of the perturbed SDE converges uniformly to the solution of a deterministic ODE as ε tends to zero. This transversal ODE is generated by the average of the perturbing vector field with respect to the invariant measures of the unperturbed system and varies with the transversal height of the leaves. We give upper bounds for the rates of convergence and illustrate these results for the random rotations on the circle. This article complements the results by Gonzales and Ruffino for SDEs of Stratonovich type to general Lévy driven SDEs of Marcus type.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2014.09.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2015-01, Vol.112, p.1-14
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1651412095
source Elsevier ScienceDirect Journals
subjects Averaging principle
Complement
Convergence
Diffusion
Dynamic tests
Fields (mathematics)
Foliated spaces
Invariants
Lévy diffusions on manifolds
Manifolds
Marcus canonical equation
Perturbation methods
Perturbation theory
Stochastic geometry
Stochastic Hamiltonian
title Averaging along foliated Lévy diffusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Averaging%20along%20foliated%20L%C3%A9vy%20diffusions&rft.jtitle=Nonlinear%20analysis&rft.au=H%C3%B6gele,%20Michael&rft.date=2015-01&rft.volume=112&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2014.09.006&rft_dat=%3Cproquest_cross%3E1651412095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651412095&rft_id=info:pmid/&rft_els_id=S0362546X14002880&rfr_iscdi=true