Averaging along foliated Lévy diffusions
This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Lévy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2015-01, Vol.112, p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Nonlinear analysis |
container_volume | 112 |
creator | Högele, Michael Ruffino, Paulo |
description | This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Lévy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost surely. Under a generic ergodicity assumption for each leaf, we determine the effective behaviour of the system subject to a small smooth perturbation of order ε>0, which acts transversal to the leaves. The main result states that, on average, the transversal component of the perturbed SDE converges uniformly to the solution of a deterministic ODE as ε tends to zero. This transversal ODE is generated by the average of the perturbing vector field with respect to the invariant measures of the unperturbed system and varies with the transversal height of the leaves. We give upper bounds for the rates of convergence and illustrate these results for the random rotations on the circle. This article complements the results by Gonzales and Ruffino for SDEs of Stratonovich type to general Lévy driven SDEs of Marcus type. |
doi_str_mv | 10.1016/j.na.2014.09.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651412095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X14002880</els_id><sourcerecordid>1651412095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-734d0e73ba92e57ab94f1d1d923be277896c20c807aef7ecf977d7a5a4f384e03</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKt7l13qYsabn0km7kqxKhTcKLgLaXJTUqYzNZkW-kg-hy_mlLp1c-7mfBfOR8gthZIClQ_rsrUlAypK0CWAPCMjWiteVIxW52QEXLKiEvLzklzlvAYAqrgckfvpHpNdxXY1sU03ZOiaaHv0k8XP9_4w8TGEXY5dm6_JRbBNxpu_OyYf86f32UuxeHt-nU0XheNS94XiwgMqvrSaYaXsUotAPfWa8SUypWotHQNXg7IYFLqglfLKVlYEXgsEPiZ3p7_b1H3tMPdmE7PDprEtdrtsqKyooAx0NVThVHWpyzlhMNsUNzYdDAVztGLWprXmaMWANoOVAXk8IThM2EdMJruIrUMfE7re-C7-D_8CH3xpKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651412095</pqid></control><display><type>article</type><title>Averaging along foliated Lévy diffusions</title><source>Elsevier ScienceDirect Journals</source><creator>Högele, Michael ; Ruffino, Paulo</creator><creatorcontrib>Högele, Michael ; Ruffino, Paulo</creatorcontrib><description>This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Lévy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost surely. Under a generic ergodicity assumption for each leaf, we determine the effective behaviour of the system subject to a small smooth perturbation of order ε>0, which acts transversal to the leaves. The main result states that, on average, the transversal component of the perturbed SDE converges uniformly to the solution of a deterministic ODE as ε tends to zero. This transversal ODE is generated by the average of the perturbing vector field with respect to the invariant measures of the unperturbed system and varies with the transversal height of the leaves. We give upper bounds for the rates of convergence and illustrate these results for the random rotations on the circle. This article complements the results by Gonzales and Ruffino for SDEs of Stratonovich type to general Lévy driven SDEs of Marcus type.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2014.09.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Averaging principle ; Complement ; Convergence ; Diffusion ; Dynamic tests ; Fields (mathematics) ; Foliated spaces ; Invariants ; Lévy diffusions on manifolds ; Manifolds ; Marcus canonical equation ; Perturbation methods ; Perturbation theory ; Stochastic geometry ; Stochastic Hamiltonian</subject><ispartof>Nonlinear analysis, 2015-01, Vol.112, p.1-14</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-734d0e73ba92e57ab94f1d1d923be277896c20c807aef7ecf977d7a5a4f384e03</citedby><cites>FETCH-LOGICAL-c369t-734d0e73ba92e57ab94f1d1d923be277896c20c807aef7ecf977d7a5a4f384e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X14002880$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Högele, Michael</creatorcontrib><creatorcontrib>Ruffino, Paulo</creatorcontrib><title>Averaging along foliated Lévy diffusions</title><title>Nonlinear analysis</title><description>This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Lévy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost surely. Under a generic ergodicity assumption for each leaf, we determine the effective behaviour of the system subject to a small smooth perturbation of order ε>0, which acts transversal to the leaves. The main result states that, on average, the transversal component of the perturbed SDE converges uniformly to the solution of a deterministic ODE as ε tends to zero. This transversal ODE is generated by the average of the perturbing vector field with respect to the invariant measures of the unperturbed system and varies with the transversal height of the leaves. We give upper bounds for the rates of convergence and illustrate these results for the random rotations on the circle. This article complements the results by Gonzales and Ruffino for SDEs of Stratonovich type to general Lévy driven SDEs of Marcus type.</description><subject>Averaging principle</subject><subject>Complement</subject><subject>Convergence</subject><subject>Diffusion</subject><subject>Dynamic tests</subject><subject>Fields (mathematics)</subject><subject>Foliated spaces</subject><subject>Invariants</subject><subject>Lévy diffusions on manifolds</subject><subject>Manifolds</subject><subject>Marcus canonical equation</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Stochastic geometry</subject><subject>Stochastic Hamiltonian</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKt7l13qYsabn0km7kqxKhTcKLgLaXJTUqYzNZkW-kg-hy_mlLp1c-7mfBfOR8gthZIClQ_rsrUlAypK0CWAPCMjWiteVIxW52QEXLKiEvLzklzlvAYAqrgckfvpHpNdxXY1sU03ZOiaaHv0k8XP9_4w8TGEXY5dm6_JRbBNxpu_OyYf86f32UuxeHt-nU0XheNS94XiwgMqvrSaYaXsUotAPfWa8SUypWotHQNXg7IYFLqglfLKVlYEXgsEPiZ3p7_b1H3tMPdmE7PDprEtdrtsqKyooAx0NVThVHWpyzlhMNsUNzYdDAVztGLWprXmaMWANoOVAXk8IThM2EdMJruIrUMfE7re-C7-D_8CH3xpKw</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Högele, Michael</creator><creator>Ruffino, Paulo</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>Averaging along foliated Lévy diffusions</title><author>Högele, Michael ; Ruffino, Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-734d0e73ba92e57ab94f1d1d923be277896c20c807aef7ecf977d7a5a4f384e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Averaging principle</topic><topic>Complement</topic><topic>Convergence</topic><topic>Diffusion</topic><topic>Dynamic tests</topic><topic>Fields (mathematics)</topic><topic>Foliated spaces</topic><topic>Invariants</topic><topic>Lévy diffusions on manifolds</topic><topic>Manifolds</topic><topic>Marcus canonical equation</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Stochastic geometry</topic><topic>Stochastic Hamiltonian</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Högele, Michael</creatorcontrib><creatorcontrib>Ruffino, Paulo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Högele, Michael</au><au>Ruffino, Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Averaging along foliated Lévy diffusions</atitle><jtitle>Nonlinear analysis</jtitle><date>2015-01</date><risdate>2015</risdate><volume>112</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>This article studies the dynamics of the strong solution of a SDE driven by a discontinuous Lévy process taking values in a smooth foliated manifold with compact leaves. It is assumed that it is foliated in the sense that its trajectories stay on the leaf of their initial value for all times almost surely. Under a generic ergodicity assumption for each leaf, we determine the effective behaviour of the system subject to a small smooth perturbation of order ε>0, which acts transversal to the leaves. The main result states that, on average, the transversal component of the perturbed SDE converges uniformly to the solution of a deterministic ODE as ε tends to zero. This transversal ODE is generated by the average of the perturbing vector field with respect to the invariant measures of the unperturbed system and varies with the transversal height of the leaves. We give upper bounds for the rates of convergence and illustrate these results for the random rotations on the circle. This article complements the results by Gonzales and Ruffino for SDEs of Stratonovich type to general Lévy driven SDEs of Marcus type.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2014.09.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2015-01, Vol.112, p.1-14 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651412095 |
source | Elsevier ScienceDirect Journals |
subjects | Averaging principle Complement Convergence Diffusion Dynamic tests Fields (mathematics) Foliated spaces Invariants Lévy diffusions on manifolds Manifolds Marcus canonical equation Perturbation methods Perturbation theory Stochastic geometry Stochastic Hamiltonian |
title | Averaging along foliated Lévy diffusions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Averaging%20along%20foliated%20L%C3%A9vy%20diffusions&rft.jtitle=Nonlinear%20analysis&rft.au=H%C3%B6gele,%20Michael&rft.date=2015-01&rft.volume=112&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2014.09.006&rft_dat=%3Cproquest_cross%3E1651412095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651412095&rft_id=info:pmid/&rft_els_id=S0362546X14002880&rfr_iscdi=true |