New entropy formula with fluctuating reservoir
Finite heat reservoir capacity, C, and temperature fluctuation, ΔT/T, lead to modifications of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, ω, we derive a deformed entropy, K(S). The resultingformula contains the Boltzman...
Gespeichert in:
Veröffentlicht in: | Physica A 2015-01, Vol.417, p.215-220 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 220 |
---|---|
container_issue | |
container_start_page | 215 |
container_title | Physica A |
container_volume | 417 |
creator | Biro, T S Barnafoldi, G G Van, P |
description | Finite heat reservoir capacity, C, and temperature fluctuation, ΔT/T, lead to modifications of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, ω, we derive a deformed entropy, K(S). The resultingformula contains the Boltzmann–Gibbs, Rényi, and Tsallis formulas as particular cases. For extreme large fluctuations, in the limit CΔT2/T2→∞, a new parameter-free entropy–probability relation is gained. The corresponding canonical energy distribution is nearly Boltzmannian for high probability, but for low probability approaches the cumulative Gompertz distribution. The latter is met in several phenomena, like earthquakes, demography, tumor growth models, extreme value probability, etc.
•We present a mathematical procedure to obtain a deformed entropy function.•We describe effects due to finite heat capacity and temperature fluctuations in the heat reservoir.•For the Gaussian fluctuation model the resulting entropy–probability relation recovers the traditional “log” formula.•Without temperature fluctuations (but at finite heat capacity) we obtain the Tsallis formula.•For extreme large temperature fluctuations we obtain a new “log(1−log)” formula. |
doi_str_mv | 10.1016/j.physa.2014.07.086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651410218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437114008115</els_id><sourcerecordid>1651410218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-aec23d87bc5e4098f7f05fd64166331a1154afcdae97c4e2eca8b346caf4a8063</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwC1gysiS8Fzu2OzCgii-pggVmy3Weqas0KXZS1H9PSpmZ7nLPle5h7BqhQEB5uy62q32yRQkoClAFaHnCJqgVz0vE2SmbAFc6F1zhObtIaQ0AqHg5YcUrfWfU9rHb7jPfxc3Q2Ow79KvMN4PrB9uH9jOLlCjuuhAv2Zm3TaKrv5yyj8eH9_lzvnh7epnfL3LHuexzS67ktVZLV5GAmfbKQ-VrKVBKztEiVsJ6V1uaKSeoJGf1kgvprBdWg-RTdnPc3cbua6DUm01IjprGttQNyaCsUCCUqMcqP1Zd7FKK5M02ho2Ne4NgDnbM2vzaMQc7BpQZ7YzU3ZGi8cUuUDTJBWod1SGS603dhX_5H1sPb1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651410218</pqid></control><display><type>article</type><title>New entropy formula with fluctuating reservoir</title><source>Elsevier ScienceDirect Journals</source><creator>Biro, T S ; Barnafoldi, G G ; Van, P</creator><creatorcontrib>Biro, T S ; Barnafoldi, G G ; Van, P</creatorcontrib><description>Finite heat reservoir capacity, C, and temperature fluctuation, ΔT/T, lead to modifications of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, ω, we derive a deformed entropy, K(S). The resultingformula contains the Boltzmann–Gibbs, Rényi, and Tsallis formulas as particular cases. For extreme large fluctuations, in the limit CΔT2/T2→∞, a new parameter-free entropy–probability relation is gained. The corresponding canonical energy distribution is nearly Boltzmannian for high probability, but for low probability approaches the cumulative Gompertz distribution. The latter is met in several phenomena, like earthquakes, demography, tumor growth models, extreme value probability, etc.
•We present a mathematical procedure to obtain a deformed entropy function.•We describe effects due to finite heat capacity and temperature fluctuations in the heat reservoir.•For the Gaussian fluctuation model the resulting entropy–probability relation recovers the traditional “log” formula.•Without temperature fluctuations (but at finite heat capacity) we obtain the Tsallis formula.•For extreme large temperature fluctuations we obtain a new “log(1−log)” formula.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2014.07.086</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bolts ; Earthquakes ; Entropy ; Finite reservoir ; Fluctuation ; Mathematical analysis ; Mathematical models ; Reservoirs ; Seismic phenomena</subject><ispartof>Physica A, 2015-01, Vol.417, p.215-220</ispartof><rights>2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-aec23d87bc5e4098f7f05fd64166331a1154afcdae97c4e2eca8b346caf4a8063</citedby><cites>FETCH-LOGICAL-c336t-aec23d87bc5e4098f7f05fd64166331a1154afcdae97c4e2eca8b346caf4a8063</cites><orcidid>0000-0001-6188-8478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378437114008115$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Biro, T S</creatorcontrib><creatorcontrib>Barnafoldi, G G</creatorcontrib><creatorcontrib>Van, P</creatorcontrib><title>New entropy formula with fluctuating reservoir</title><title>Physica A</title><description>Finite heat reservoir capacity, C, and temperature fluctuation, ΔT/T, lead to modifications of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, ω, we derive a deformed entropy, K(S). The resultingformula contains the Boltzmann–Gibbs, Rényi, and Tsallis formulas as particular cases. For extreme large fluctuations, in the limit CΔT2/T2→∞, a new parameter-free entropy–probability relation is gained. The corresponding canonical energy distribution is nearly Boltzmannian for high probability, but for low probability approaches the cumulative Gompertz distribution. The latter is met in several phenomena, like earthquakes, demography, tumor growth models, extreme value probability, etc.
•We present a mathematical procedure to obtain a deformed entropy function.•We describe effects due to finite heat capacity and temperature fluctuations in the heat reservoir.•For the Gaussian fluctuation model the resulting entropy–probability relation recovers the traditional “log” formula.•Without temperature fluctuations (but at finite heat capacity) we obtain the Tsallis formula.•For extreme large temperature fluctuations we obtain a new “log(1−log)” formula.</description><subject>Bolts</subject><subject>Earthquakes</subject><subject>Entropy</subject><subject>Finite reservoir</subject><subject>Fluctuation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Reservoirs</subject><subject>Seismic phenomena</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwC1gysiS8Fzu2OzCgii-pggVmy3Weqas0KXZS1H9PSpmZ7nLPle5h7BqhQEB5uy62q32yRQkoClAFaHnCJqgVz0vE2SmbAFc6F1zhObtIaQ0AqHg5YcUrfWfU9rHb7jPfxc3Q2Ow79KvMN4PrB9uH9jOLlCjuuhAv2Zm3TaKrv5yyj8eH9_lzvnh7epnfL3LHuexzS67ktVZLV5GAmfbKQ-VrKVBKztEiVsJ6V1uaKSeoJGf1kgvprBdWg-RTdnPc3cbua6DUm01IjprGttQNyaCsUCCUqMcqP1Zd7FKK5M02ho2Ne4NgDnbM2vzaMQc7BpQZ7YzU3ZGi8cUuUDTJBWod1SGS603dhX_5H1sPb1g</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Biro, T S</creator><creator>Barnafoldi, G G</creator><creator>Van, P</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6188-8478</orcidid></search><sort><creationdate>20150101</creationdate><title>New entropy formula with fluctuating reservoir</title><author>Biro, T S ; Barnafoldi, G G ; Van, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-aec23d87bc5e4098f7f05fd64166331a1154afcdae97c4e2eca8b346caf4a8063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bolts</topic><topic>Earthquakes</topic><topic>Entropy</topic><topic>Finite reservoir</topic><topic>Fluctuation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Reservoirs</topic><topic>Seismic phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biro, T S</creatorcontrib><creatorcontrib>Barnafoldi, G G</creatorcontrib><creatorcontrib>Van, P</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biro, T S</au><au>Barnafoldi, G G</au><au>Van, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New entropy formula with fluctuating reservoir</atitle><jtitle>Physica A</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>417</volume><spage>215</spage><epage>220</epage><pages>215-220</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>Finite heat reservoir capacity, C, and temperature fluctuation, ΔT/T, lead to modifications of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, ω, we derive a deformed entropy, K(S). The resultingformula contains the Boltzmann–Gibbs, Rényi, and Tsallis formulas as particular cases. For extreme large fluctuations, in the limit CΔT2/T2→∞, a new parameter-free entropy–probability relation is gained. The corresponding canonical energy distribution is nearly Boltzmannian for high probability, but for low probability approaches the cumulative Gompertz distribution. The latter is met in several phenomena, like earthquakes, demography, tumor growth models, extreme value probability, etc.
•We present a mathematical procedure to obtain a deformed entropy function.•We describe effects due to finite heat capacity and temperature fluctuations in the heat reservoir.•For the Gaussian fluctuation model the resulting entropy–probability relation recovers the traditional “log” formula.•Without temperature fluctuations (but at finite heat capacity) we obtain the Tsallis formula.•For extreme large temperature fluctuations we obtain a new “log(1−log)” formula.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2014.07.086</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6188-8478</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-4371 |
ispartof | Physica A, 2015-01, Vol.417, p.215-220 |
issn | 0378-4371 1873-2119 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651410218 |
source | Elsevier ScienceDirect Journals |
subjects | Bolts Earthquakes Entropy Finite reservoir Fluctuation Mathematical analysis Mathematical models Reservoirs Seismic phenomena |
title | New entropy formula with fluctuating reservoir |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20entropy%20formula%20with%20fluctuating%20reservoir&rft.jtitle=Physica%20A&rft.au=Biro,%20T%20S&rft.date=2015-01-01&rft.volume=417&rft.spage=215&rft.epage=220&rft.pages=215-220&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2014.07.086&rft_dat=%3Cproquest_cross%3E1651410218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651410218&rft_id=info:pmid/&rft_els_id=S0378437114008115&rfr_iscdi=true |