New entropy formula with fluctuating reservoir

Finite heat reservoir capacity, C, and temperature fluctuation, ΔT/T, lead to modifications of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, ω, we derive a deformed entropy, K(S). The resultingformula contains the Boltzman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2015-01, Vol.417, p.215-220
Hauptverfasser: Biro, T S, Barnafoldi, G G, Van, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue
container_start_page 215
container_title Physica A
container_volume 417
creator Biro, T S
Barnafoldi, G G
Van, P
description Finite heat reservoir capacity, C, and temperature fluctuation, ΔT/T, lead to modifications of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, ω, we derive a deformed entropy, K(S). The resultingformula contains the Boltzmann–Gibbs, Rényi, and Tsallis formulas as particular cases. For extreme large fluctuations, in the limit CΔT2/T2→∞, a new parameter-free entropy–probability relation is gained. The corresponding canonical energy distribution is nearly Boltzmannian for high probability, but for low probability approaches the cumulative Gompertz distribution. The latter is met in several phenomena, like earthquakes, demography, tumor growth models, extreme value probability, etc. •We present a mathematical procedure to obtain a deformed entropy function.•We describe effects due to finite heat capacity and temperature fluctuations in the heat reservoir.•For the Gaussian fluctuation model the resulting entropy–probability relation recovers the traditional “log” formula.•Without temperature fluctuations (but at finite heat capacity) we obtain the Tsallis formula.•For extreme large temperature fluctuations we obtain a new “log(1−log)” formula.
doi_str_mv 10.1016/j.physa.2014.07.086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651410218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437114008115</els_id><sourcerecordid>1651410218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-aec23d87bc5e4098f7f05fd64166331a1154afcdae97c4e2eca8b346caf4a8063</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwC1gysiS8Fzu2OzCgii-pggVmy3Weqas0KXZS1H9PSpmZ7nLPle5h7BqhQEB5uy62q32yRQkoClAFaHnCJqgVz0vE2SmbAFc6F1zhObtIaQ0AqHg5YcUrfWfU9rHb7jPfxc3Q2Ow79KvMN4PrB9uH9jOLlCjuuhAv2Zm3TaKrv5yyj8eH9_lzvnh7epnfL3LHuexzS67ktVZLV5GAmfbKQ-VrKVBKztEiVsJ6V1uaKSeoJGf1kgvprBdWg-RTdnPc3cbua6DUm01IjprGttQNyaCsUCCUqMcqP1Zd7FKK5M02ho2Ne4NgDnbM2vzaMQc7BpQZ7YzU3ZGi8cUuUDTJBWod1SGS603dhX_5H1sPb1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651410218</pqid></control><display><type>article</type><title>New entropy formula with fluctuating reservoir</title><source>Elsevier ScienceDirect Journals</source><creator>Biro, T S ; Barnafoldi, G G ; Van, P</creator><creatorcontrib>Biro, T S ; Barnafoldi, G G ; Van, P</creatorcontrib><description>Finite heat reservoir capacity, C, and temperature fluctuation, ΔT/T, lead to modifications of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, ω, we derive a deformed entropy, K(S). The resultingformula contains the Boltzmann–Gibbs, Rényi, and Tsallis formulas as particular cases. For extreme large fluctuations, in the limit CΔT2/T2→∞, a new parameter-free entropy–probability relation is gained. The corresponding canonical energy distribution is nearly Boltzmannian for high probability, but for low probability approaches the cumulative Gompertz distribution. The latter is met in several phenomena, like earthquakes, demography, tumor growth models, extreme value probability, etc. •We present a mathematical procedure to obtain a deformed entropy function.•We describe effects due to finite heat capacity and temperature fluctuations in the heat reservoir.•For the Gaussian fluctuation model the resulting entropy–probability relation recovers the traditional “log” formula.•Without temperature fluctuations (but at finite heat capacity) we obtain the Tsallis formula.•For extreme large temperature fluctuations we obtain a new “log(1−log)” formula.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2014.07.086</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bolts ; Earthquakes ; Entropy ; Finite reservoir ; Fluctuation ; Mathematical analysis ; Mathematical models ; Reservoirs ; Seismic phenomena</subject><ispartof>Physica A, 2015-01, Vol.417, p.215-220</ispartof><rights>2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-aec23d87bc5e4098f7f05fd64166331a1154afcdae97c4e2eca8b346caf4a8063</citedby><cites>FETCH-LOGICAL-c336t-aec23d87bc5e4098f7f05fd64166331a1154afcdae97c4e2eca8b346caf4a8063</cites><orcidid>0000-0001-6188-8478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378437114008115$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Biro, T S</creatorcontrib><creatorcontrib>Barnafoldi, G G</creatorcontrib><creatorcontrib>Van, P</creatorcontrib><title>New entropy formula with fluctuating reservoir</title><title>Physica A</title><description>Finite heat reservoir capacity, C, and temperature fluctuation, ΔT/T, lead to modifications of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, ω, we derive a deformed entropy, K(S). The resultingformula contains the Boltzmann–Gibbs, Rényi, and Tsallis formulas as particular cases. For extreme large fluctuations, in the limit CΔT2/T2→∞, a new parameter-free entropy–probability relation is gained. The corresponding canonical energy distribution is nearly Boltzmannian for high probability, but for low probability approaches the cumulative Gompertz distribution. The latter is met in several phenomena, like earthquakes, demography, tumor growth models, extreme value probability, etc. •We present a mathematical procedure to obtain a deformed entropy function.•We describe effects due to finite heat capacity and temperature fluctuations in the heat reservoir.•For the Gaussian fluctuation model the resulting entropy–probability relation recovers the traditional “log” formula.•Without temperature fluctuations (but at finite heat capacity) we obtain the Tsallis formula.•For extreme large temperature fluctuations we obtain a new “log(1−log)” formula.</description><subject>Bolts</subject><subject>Earthquakes</subject><subject>Entropy</subject><subject>Finite reservoir</subject><subject>Fluctuation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Reservoirs</subject><subject>Seismic phenomena</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwC1gysiS8Fzu2OzCgii-pggVmy3Weqas0KXZS1H9PSpmZ7nLPle5h7BqhQEB5uy62q32yRQkoClAFaHnCJqgVz0vE2SmbAFc6F1zhObtIaQ0AqHg5YcUrfWfU9rHb7jPfxc3Q2Ow79KvMN4PrB9uH9jOLlCjuuhAv2Zm3TaKrv5yyj8eH9_lzvnh7epnfL3LHuexzS67ktVZLV5GAmfbKQ-VrKVBKztEiVsJ6V1uaKSeoJGf1kgvprBdWg-RTdnPc3cbua6DUm01IjprGttQNyaCsUCCUqMcqP1Zd7FKK5M02ho2Ne4NgDnbM2vzaMQc7BpQZ7YzU3ZGi8cUuUDTJBWod1SGS603dhX_5H1sPb1g</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Biro, T S</creator><creator>Barnafoldi, G G</creator><creator>Van, P</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6188-8478</orcidid></search><sort><creationdate>20150101</creationdate><title>New entropy formula with fluctuating reservoir</title><author>Biro, T S ; Barnafoldi, G G ; Van, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-aec23d87bc5e4098f7f05fd64166331a1154afcdae97c4e2eca8b346caf4a8063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bolts</topic><topic>Earthquakes</topic><topic>Entropy</topic><topic>Finite reservoir</topic><topic>Fluctuation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Reservoirs</topic><topic>Seismic phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biro, T S</creatorcontrib><creatorcontrib>Barnafoldi, G G</creatorcontrib><creatorcontrib>Van, P</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biro, T S</au><au>Barnafoldi, G G</au><au>Van, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New entropy formula with fluctuating reservoir</atitle><jtitle>Physica A</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>417</volume><spage>215</spage><epage>220</epage><pages>215-220</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>Finite heat reservoir capacity, C, and temperature fluctuation, ΔT/T, lead to modifications of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, ω, we derive a deformed entropy, K(S). The resultingformula contains the Boltzmann–Gibbs, Rényi, and Tsallis formulas as particular cases. For extreme large fluctuations, in the limit CΔT2/T2→∞, a new parameter-free entropy–probability relation is gained. The corresponding canonical energy distribution is nearly Boltzmannian for high probability, but for low probability approaches the cumulative Gompertz distribution. The latter is met in several phenomena, like earthquakes, demography, tumor growth models, extreme value probability, etc. •We present a mathematical procedure to obtain a deformed entropy function.•We describe effects due to finite heat capacity and temperature fluctuations in the heat reservoir.•For the Gaussian fluctuation model the resulting entropy–probability relation recovers the traditional “log” formula.•Without temperature fluctuations (but at finite heat capacity) we obtain the Tsallis formula.•For extreme large temperature fluctuations we obtain a new “log(1−log)” formula.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2014.07.086</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6188-8478</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2015-01, Vol.417, p.215-220
issn 0378-4371
1873-2119
language eng
recordid cdi_proquest_miscellaneous_1651410218
source Elsevier ScienceDirect Journals
subjects Bolts
Earthquakes
Entropy
Finite reservoir
Fluctuation
Mathematical analysis
Mathematical models
Reservoirs
Seismic phenomena
title New entropy formula with fluctuating reservoir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20entropy%20formula%20with%20fluctuating%20reservoir&rft.jtitle=Physica%20A&rft.au=Biro,%20T%20S&rft.date=2015-01-01&rft.volume=417&rft.spage=215&rft.epage=220&rft.pages=215-220&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2014.07.086&rft_dat=%3Cproquest_cross%3E1651410218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651410218&rft_id=info:pmid/&rft_els_id=S0378437114008115&rfr_iscdi=true