Recurrence relations for the Cartesian derivatives of the Zernike polynomials

A recurrence relation for the first-order Cartesian derivatives of the Zernike polynomials is derived. This relation is used with the Clenshaw method to determine an efficient method for calculating the derivatives of any linear series of Zernike polynomials.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2014-04, Vol.31 (4), p.708-715
1. Verfasser: Stephenson, Philip C L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 715
container_issue 4
container_start_page 708
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 31
creator Stephenson, Philip C L
description A recurrence relation for the first-order Cartesian derivatives of the Zernike polynomials is derived. This relation is used with the Clenshaw method to determine an efficient method for calculating the derivatives of any linear series of Zernike polynomials.
doi_str_mv 10.1364/JOSAA.31.000852
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651408967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651408967</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16514089673</originalsourceid><addsrcrecordid>eNqVir0KwjAYAIMo-Du7ZnRpTdqmjaOIIoII6uQioX7FaExqvlbw7S3iCzjdwR0hY85CHqfJdLM7zOdhzEPGmBRRi_S4iFggRRy1G2cyCTIRzbqkj3hrniSVWY9s95DX3oPNgXowqtLOIi2cp9UV6EL5ClArSy_g9aupL0Dqim88gbf6DrR05m3dQyuDQ9IpGsDoxwGZrJbHxToovXvWgNX5oTEHY5QFV-OZp4InTM7SLP5j_QA1CUj5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651408967</pqid></control><display><type>article</type><title>Recurrence relations for the Cartesian derivatives of the Zernike polynomials</title><source>Optica Publishing Group Journals</source><creator>Stephenson, Philip C L</creator><creatorcontrib>Stephenson, Philip C L</creatorcontrib><description>A recurrence relation for the first-order Cartesian derivatives of the Zernike polynomials is derived. This relation is used with the Clenshaw method to determine an efficient method for calculating the derivatives of any linear series of Zernike polynomials.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.31.000852</identifier><language>eng</language><subject>Americas ; Cartesian ; Derivatives ; Mathematical analysis ; Vision ; Zernike polynomials</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2014-04, Vol.31 (4), p.708-715</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stephenson, Philip C L</creatorcontrib><title>Recurrence relations for the Cartesian derivatives of the Zernike polynomials</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><description>A recurrence relation for the first-order Cartesian derivatives of the Zernike polynomials is derived. This relation is used with the Clenshaw method to determine an efficient method for calculating the derivatives of any linear series of Zernike polynomials.</description><subject>Americas</subject><subject>Cartesian</subject><subject>Derivatives</subject><subject>Mathematical analysis</subject><subject>Vision</subject><subject>Zernike polynomials</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVir0KwjAYAIMo-Du7ZnRpTdqmjaOIIoII6uQioX7FaExqvlbw7S3iCzjdwR0hY85CHqfJdLM7zOdhzEPGmBRRi_S4iFggRRy1G2cyCTIRzbqkj3hrniSVWY9s95DX3oPNgXowqtLOIi2cp9UV6EL5ClArSy_g9aupL0Dqim88gbf6DrR05m3dQyuDQ9IpGsDoxwGZrJbHxToovXvWgNX5oTEHY5QFV-OZp4InTM7SLP5j_QA1CUj5</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Stephenson, Philip C L</creator><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Recurrence relations for the Cartesian derivatives of the Zernike polynomials</title><author>Stephenson, Philip C L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16514089673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Americas</topic><topic>Cartesian</topic><topic>Derivatives</topic><topic>Mathematical analysis</topic><topic>Vision</topic><topic>Zernike polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephenson, Philip C L</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephenson, Philip C L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrence relations for the Cartesian derivatives of the Zernike polynomials</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>31</volume><issue>4</issue><spage>708</spage><epage>715</epage><pages>708-715</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>A recurrence relation for the first-order Cartesian derivatives of the Zernike polynomials is derived. This relation is used with the Clenshaw method to determine an efficient method for calculating the derivatives of any linear series of Zernike polynomials.</abstract><doi>10.1364/JOSAA.31.000852</doi></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2014-04, Vol.31 (4), p.708-715
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_1651408967
source Optica Publishing Group Journals
subjects Americas
Cartesian
Derivatives
Mathematical analysis
Vision
Zernike polynomials
title Recurrence relations for the Cartesian derivatives of the Zernike polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrence%20relations%20for%20the%20Cartesian%20derivatives%20of%20the%20Zernike%20polynomials&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Stephenson,%20Philip%20C%20L&rft.date=2014-04-01&rft.volume=31&rft.issue=4&rft.spage=708&rft.epage=715&rft.pages=708-715&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.31.000852&rft_dat=%3Cproquest%3E1651408967%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651408967&rft_id=info:pmid/&rfr_iscdi=true