Recurrence relations for the Cartesian derivatives of the Zernike polynomials
A recurrence relation for the first-order Cartesian derivatives of the Zernike polynomials is derived. This relation is used with the Clenshaw method to determine an efficient method for calculating the derivatives of any linear series of Zernike polynomials.
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2014-04, Vol.31 (4), p.708-715 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 715 |
---|---|
container_issue | 4 |
container_start_page | 708 |
container_title | Journal of the Optical Society of America. A, Optics, image science, and vision |
container_volume | 31 |
creator | Stephenson, Philip C L |
description | A recurrence relation for the first-order Cartesian derivatives of the Zernike polynomials is derived. This relation is used with the Clenshaw method to determine an efficient method for calculating the derivatives of any linear series of Zernike polynomials. |
doi_str_mv | 10.1364/JOSAA.31.000852 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651408967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651408967</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16514089673</originalsourceid><addsrcrecordid>eNqVir0KwjAYAIMo-Du7ZnRpTdqmjaOIIoII6uQioX7FaExqvlbw7S3iCzjdwR0hY85CHqfJdLM7zOdhzEPGmBRRi_S4iFggRRy1G2cyCTIRzbqkj3hrniSVWY9s95DX3oPNgXowqtLOIi2cp9UV6EL5ClArSy_g9aupL0Dqim88gbf6DrR05m3dQyuDQ9IpGsDoxwGZrJbHxToovXvWgNX5oTEHY5QFV-OZp4InTM7SLP5j_QA1CUj5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651408967</pqid></control><display><type>article</type><title>Recurrence relations for the Cartesian derivatives of the Zernike polynomials</title><source>Optica Publishing Group Journals</source><creator>Stephenson, Philip C L</creator><creatorcontrib>Stephenson, Philip C L</creatorcontrib><description>A recurrence relation for the first-order Cartesian derivatives of the Zernike polynomials is derived. This relation is used with the Clenshaw method to determine an efficient method for calculating the derivatives of any linear series of Zernike polynomials.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.31.000852</identifier><language>eng</language><subject>Americas ; Cartesian ; Derivatives ; Mathematical analysis ; Vision ; Zernike polynomials</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2014-04, Vol.31 (4), p.708-715</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stephenson, Philip C L</creatorcontrib><title>Recurrence relations for the Cartesian derivatives of the Zernike polynomials</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><description>A recurrence relation for the first-order Cartesian derivatives of the Zernike polynomials is derived. This relation is used with the Clenshaw method to determine an efficient method for calculating the derivatives of any linear series of Zernike polynomials.</description><subject>Americas</subject><subject>Cartesian</subject><subject>Derivatives</subject><subject>Mathematical analysis</subject><subject>Vision</subject><subject>Zernike polynomials</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVir0KwjAYAIMo-Du7ZnRpTdqmjaOIIoII6uQioX7FaExqvlbw7S3iCzjdwR0hY85CHqfJdLM7zOdhzEPGmBRRi_S4iFggRRy1G2cyCTIRzbqkj3hrniSVWY9s95DX3oPNgXowqtLOIi2cp9UV6EL5ClArSy_g9aupL0Dqim88gbf6DrR05m3dQyuDQ9IpGsDoxwGZrJbHxToovXvWgNX5oTEHY5QFV-OZp4InTM7SLP5j_QA1CUj5</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Stephenson, Philip C L</creator><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Recurrence relations for the Cartesian derivatives of the Zernike polynomials</title><author>Stephenson, Philip C L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16514089673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Americas</topic><topic>Cartesian</topic><topic>Derivatives</topic><topic>Mathematical analysis</topic><topic>Vision</topic><topic>Zernike polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephenson, Philip C L</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephenson, Philip C L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrence relations for the Cartesian derivatives of the Zernike polynomials</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>31</volume><issue>4</issue><spage>708</spage><epage>715</epage><pages>708-715</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>A recurrence relation for the first-order Cartesian derivatives of the Zernike polynomials is derived. This relation is used with the Clenshaw method to determine an efficient method for calculating the derivatives of any linear series of Zernike polynomials.</abstract><doi>10.1364/JOSAA.31.000852</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-7529 |
ispartof | Journal of the Optical Society of America. A, Optics, image science, and vision, 2014-04, Vol.31 (4), p.708-715 |
issn | 1084-7529 1520-8532 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651408967 |
source | Optica Publishing Group Journals |
subjects | Americas Cartesian Derivatives Mathematical analysis Vision Zernike polynomials |
title | Recurrence relations for the Cartesian derivatives of the Zernike polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrence%20relations%20for%20the%20Cartesian%20derivatives%20of%20the%20Zernike%20polynomials&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Stephenson,%20Philip%20C%20L&rft.date=2014-04-01&rft.volume=31&rft.issue=4&rft.spage=708&rft.epage=715&rft.pages=708-715&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.31.000852&rft_dat=%3Cproquest%3E1651408967%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651408967&rft_id=info:pmid/&rfr_iscdi=true |