Improving desalination by coupling membrane capacitive deionization with microbial desalination cell

One main obstacle for the development of microbial desalination cell (MDC) is that desalination rate decreases fast when salt concentration in the cell becomes low. To cover this shortage while using less energy to fulfill complete desalination, membrane capacitive deionization (MCDI) was used in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination 2014-12, Vol.354, p.23-29
Hauptverfasser: Wen, Qinxue, Zhang, Huichao, Yang, Hong, Chen, Zhiqiang, Nan, Jun, Feng, Yujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue
container_start_page 23
container_title Desalination
container_volume 354
creator Wen, Qinxue
Zhang, Huichao
Yang, Hong
Chen, Zhiqiang
Nan, Jun
Feng, Yujie
description One main obstacle for the development of microbial desalination cell (MDC) is that desalination rate decreases fast when salt concentration in the cell becomes low. To cover this shortage while using less energy to fulfill complete desalination, membrane capacitive deionization (MCDI) was used in this research as the downstream desalination process to further desalinate 1g/L salt water. Single MDC, two MDCs in series and in parallel were used as the power supply to drive the MCDI, and the parallel-configuration system gave the best ECA of 264.8μmol/g, which was a 59% increase compared to that of driven by the potentiostat with the same operational voltage. The desalination rate of the MCDI was as high as 3.7mg/h in one working cycle. MCDI proved to be an effective technology to combine with MDC for complete salt removal. •MCDI showed a good desalination performance for 1g/L salt water when driven by MDCs.•Parallel connection of two MDCs to drive MCDI gave better salt removal effect.•A MDC driven MDC–MCDI process was developed to treat 10g/L salt water.•A maximum ECA of 264.8μmol/g and desalination rate of 3.7mg/h were achieved.
doi_str_mv 10.1016/j.desal.2014.09.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651406855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916414005025</els_id><sourcerecordid>1651406855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ba3f523c85ef7839522c1ad8e459bef65a7b25353fb441e41ecb8cb21dd6986e3</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWKtP4GY2gpsZc5_MwoUUL4WCG12HJHNGU-ZSJ9NKfXozbRHciBAIId-5_B9ClwRnBBN5s8xKCKbOKCY8w0WGaX6EJkTlLOVc8mM0wZiQtCCSn6KzEJbxSQvGJqicN6u-2_j2Ldm18K0ZfNcmdpu4br2qx48GGtubFhJnVsb5wW8gwpHyX3v40w_vSeNd31lv6t-NHNT1OTqpTB3g4nBP0evD_cvsKV08P85nd4vUcSaH1BpWCcqcElDlihWCUkdMqYCLwkIlhcktFUywynJOIB5nlbOUlKUslAQ2Rdf7vjHSxxrCoBsfxgXi8t06aCIF4VgqIf6B8jw6kpxGlO3RmC-EHiq96n1j-q0mWI_69VLvIutRv8aFjvpj1dVhgAnO1FUU6Hz4KaWqYFhxGbnbPQdRzMZDr4Pz0DoofQ9u0GXn_5zzDUMenfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647012642</pqid></control><display><type>article</type><title>Improving desalination by coupling membrane capacitive deionization with microbial desalination cell</title><source>Elsevier ScienceDirect Journals</source><creator>Wen, Qinxue ; Zhang, Huichao ; Yang, Hong ; Chen, Zhiqiang ; Nan, Jun ; Feng, Yujie</creator><creatorcontrib>Wen, Qinxue ; Zhang, Huichao ; Yang, Hong ; Chen, Zhiqiang ; Nan, Jun ; Feng, Yujie</creatorcontrib><description>One main obstacle for the development of microbial desalination cell (MDC) is that desalination rate decreases fast when salt concentration in the cell becomes low. To cover this shortage while using less energy to fulfill complete desalination, membrane capacitive deionization (MCDI) was used in this research as the downstream desalination process to further desalinate 1g/L salt water. Single MDC, two MDCs in series and in parallel were used as the power supply to drive the MCDI, and the parallel-configuration system gave the best ECA of 264.8μmol/g, which was a 59% increase compared to that of driven by the potentiostat with the same operational voltage. The desalination rate of the MCDI was as high as 3.7mg/h in one working cycle. MCDI proved to be an effective technology to combine with MDC for complete salt removal. •MCDI showed a good desalination performance for 1g/L salt water when driven by MDCs.•Parallel connection of two MDCs to drive MCDI gave better salt removal effect.•A MDC driven MDC–MCDI process was developed to treat 10g/L salt water.•A maximum ECA of 264.8μmol/g and desalination rate of 3.7mg/h were achieved.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2014.09.027</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Deionization ; Desalination ; Desalination rate ; Drinking water and swimming-pool water. Desalination ; Electric potential ; Electrosorption capacity (ECA) ; Exact sciences and technology ; Membrane capacitive deionization (MCDI) ; Membranes ; Microbial desalination cell (MDC) ; Microorganisms ; Pollution ; Power supplies ; Shortages ; Voltage ; Water treatment and pollution</subject><ispartof>Desalination, 2014-12, Vol.354, p.23-29</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ba3f523c85ef7839522c1ad8e459bef65a7b25353fb441e41ecb8cb21dd6986e3</citedby><cites>FETCH-LOGICAL-c436t-ba3f523c85ef7839522c1ad8e459bef65a7b25353fb441e41ecb8cb21dd6986e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0011916414005025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28930846$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Qinxue</creatorcontrib><creatorcontrib>Zhang, Huichao</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Nan, Jun</creatorcontrib><creatorcontrib>Feng, Yujie</creatorcontrib><title>Improving desalination by coupling membrane capacitive deionization with microbial desalination cell</title><title>Desalination</title><description>One main obstacle for the development of microbial desalination cell (MDC) is that desalination rate decreases fast when salt concentration in the cell becomes low. To cover this shortage while using less energy to fulfill complete desalination, membrane capacitive deionization (MCDI) was used in this research as the downstream desalination process to further desalinate 1g/L salt water. Single MDC, two MDCs in series and in parallel were used as the power supply to drive the MCDI, and the parallel-configuration system gave the best ECA of 264.8μmol/g, which was a 59% increase compared to that of driven by the potentiostat with the same operational voltage. The desalination rate of the MCDI was as high as 3.7mg/h in one working cycle. MCDI proved to be an effective technology to combine with MDC for complete salt removal. •MCDI showed a good desalination performance for 1g/L salt water when driven by MDCs.•Parallel connection of two MDCs to drive MCDI gave better salt removal effect.•A MDC driven MDC–MCDI process was developed to treat 10g/L salt water.•A maximum ECA of 264.8μmol/g and desalination rate of 3.7mg/h were achieved.</description><subject>Applied sciences</subject><subject>Deionization</subject><subject>Desalination</subject><subject>Desalination rate</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Electric potential</subject><subject>Electrosorption capacity (ECA)</subject><subject>Exact sciences and technology</subject><subject>Membrane capacitive deionization (MCDI)</subject><subject>Membranes</subject><subject>Microbial desalination cell (MDC)</subject><subject>Microorganisms</subject><subject>Pollution</subject><subject>Power supplies</subject><subject>Shortages</subject><subject>Voltage</subject><subject>Water treatment and pollution</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhoMoWKtP4GY2gpsZc5_MwoUUL4WCG12HJHNGU-ZSJ9NKfXozbRHciBAIId-5_B9ClwRnBBN5s8xKCKbOKCY8w0WGaX6EJkTlLOVc8mM0wZiQtCCSn6KzEJbxSQvGJqicN6u-2_j2Ldm18K0ZfNcmdpu4br2qx48GGtubFhJnVsb5wW8gwpHyX3v40w_vSeNd31lv6t-NHNT1OTqpTB3g4nBP0evD_cvsKV08P85nd4vUcSaH1BpWCcqcElDlihWCUkdMqYCLwkIlhcktFUywynJOIB5nlbOUlKUslAQ2Rdf7vjHSxxrCoBsfxgXi8t06aCIF4VgqIf6B8jw6kpxGlO3RmC-EHiq96n1j-q0mWI_69VLvIutRv8aFjvpj1dVhgAnO1FUU6Hz4KaWqYFhxGbnbPQdRzMZDr4Pz0DoofQ9u0GXn_5zzDUMenfI</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Wen, Qinxue</creator><creator>Zhang, Huichao</creator><creator>Yang, Hong</creator><creator>Chen, Zhiqiang</creator><creator>Nan, Jun</creator><creator>Feng, Yujie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><scope>7SU</scope><scope>KR7</scope></search><sort><creationdate>20141201</creationdate><title>Improving desalination by coupling membrane capacitive deionization with microbial desalination cell</title><author>Wen, Qinxue ; Zhang, Huichao ; Yang, Hong ; Chen, Zhiqiang ; Nan, Jun ; Feng, Yujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ba3f523c85ef7839522c1ad8e459bef65a7b25353fb441e41ecb8cb21dd6986e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Deionization</topic><topic>Desalination</topic><topic>Desalination rate</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Electric potential</topic><topic>Electrosorption capacity (ECA)</topic><topic>Exact sciences and technology</topic><topic>Membrane capacitive deionization (MCDI)</topic><topic>Membranes</topic><topic>Microbial desalination cell (MDC)</topic><topic>Microorganisms</topic><topic>Pollution</topic><topic>Power supplies</topic><topic>Shortages</topic><topic>Voltage</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Qinxue</creatorcontrib><creatorcontrib>Zhang, Huichao</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Nan, Jun</creatorcontrib><creatorcontrib>Feng, Yujie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Qinxue</au><au>Zhang, Huichao</au><au>Yang, Hong</au><au>Chen, Zhiqiang</au><au>Nan, Jun</au><au>Feng, Yujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving desalination by coupling membrane capacitive deionization with microbial desalination cell</atitle><jtitle>Desalination</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>354</volume><spage>23</spage><epage>29</epage><pages>23-29</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>One main obstacle for the development of microbial desalination cell (MDC) is that desalination rate decreases fast when salt concentration in the cell becomes low. To cover this shortage while using less energy to fulfill complete desalination, membrane capacitive deionization (MCDI) was used in this research as the downstream desalination process to further desalinate 1g/L salt water. Single MDC, two MDCs in series and in parallel were used as the power supply to drive the MCDI, and the parallel-configuration system gave the best ECA of 264.8μmol/g, which was a 59% increase compared to that of driven by the potentiostat with the same operational voltage. The desalination rate of the MCDI was as high as 3.7mg/h in one working cycle. MCDI proved to be an effective technology to combine with MDC for complete salt removal. •MCDI showed a good desalination performance for 1g/L salt water when driven by MDCs.•Parallel connection of two MDCs to drive MCDI gave better salt removal effect.•A MDC driven MDC–MCDI process was developed to treat 10g/L salt water.•A maximum ECA of 264.8μmol/g and desalination rate of 3.7mg/h were achieved.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2014.09.027</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-9164
ispartof Desalination, 2014-12, Vol.354, p.23-29
issn 0011-9164
1873-4464
language eng
recordid cdi_proquest_miscellaneous_1651406855
source Elsevier ScienceDirect Journals
subjects Applied sciences
Deionization
Desalination
Desalination rate
Drinking water and swimming-pool water. Desalination
Electric potential
Electrosorption capacity (ECA)
Exact sciences and technology
Membrane capacitive deionization (MCDI)
Membranes
Microbial desalination cell (MDC)
Microorganisms
Pollution
Power supplies
Shortages
Voltage
Water treatment and pollution
title Improving desalination by coupling membrane capacitive deionization with microbial desalination cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20desalination%20by%20coupling%20membrane%20capacitive%20deionization%20with%20microbial%20desalination%20cell&rft.jtitle=Desalination&rft.au=Wen,%20Qinxue&rft.date=2014-12-01&rft.volume=354&rft.spage=23&rft.epage=29&rft.pages=23-29&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/j.desal.2014.09.027&rft_dat=%3Cproquest_cross%3E1651406855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647012642&rft_id=info:pmid/&rft_els_id=S0011916414005025&rfr_iscdi=true