Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films

As demand for lower power and higher performance nano-electronic products increases, the semiconductor industry must adopt insulating materials with progressively lower dielectric constants (i.e. low-k) in order to minimize capacitive related power losses in integrated circuits. However in addition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids 2013-11, Vol.379, p.67-79
Hauptverfasser: King, Sean W., Bielefeld, Jeff, Xu, Guanghai, Lanford, William A., Matsuda, Yusuke, Dauskardt, Reinhold H., Kim, Namjun, Hondongwa, Donald, Olasov, Lauren, Daly, Brian, Stan, Gheorghe, Liu, Ming, Dutta, Dhanadeep, Gidley, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue
container_start_page 67
container_title Journal of non-crystalline solids
container_volume 379
creator King, Sean W.
Bielefeld, Jeff
Xu, Guanghai
Lanford, William A.
Matsuda, Yusuke
Dauskardt, Reinhold H.
Kim, Namjun
Hondongwa, Donald
Olasov, Lauren
Daly, Brian
Stan, Gheorghe
Liu, Ming
Dutta, Dhanadeep
Gidley, David
description As demand for lower power and higher performance nano-electronic products increases, the semiconductor industry must adopt insulating materials with progressively lower dielectric constants (i.e. low-k) in order to minimize capacitive related power losses in integrated circuits. However in addition to a lower dielectric constant, low-k materials typically exhibit many other reduced material properties that have limited the ability of the semiconductor industry to implement them. In this article, we demonstrate that the reduced material properties exhibited by low-k materials can be understood based on bond constraint and percolation theory. Using a-SiC:H as a case study material, we utilize nuclear reaction analysis, Rutherford backscattering, nuclear magnetic resonance and transmission Fourier transform infra-red spectroscopy measurements to determine the average coordination (〈r〉) for these materials. Correlations of 〈r〉 to Young's modulus, hardness, thermal conductivity, resistivity, refractive index, intrinsic stress, mass density and porosity show that an extremely wide range in material properties (in some cases several orders of magnitude) can be achieved through reducing 〈r〉 via the controlled incorporation of terminal SiHx and CHx groups. We also demonstrate that the critical point at 〈r〉≤2.4 predicted by constraint theory exists in this material system and places limitations on the range of properties that can be achieved for future low-k a-SiC:H materials. •Demonstration of bond percolation effects on material properties of a-SiC:H•Observation of singularities in material properties predicted by constraint theory•Experimental validation of theoretical rigidity percolation scaling exponent•Fundamental role of average coordination on low-k dielectric material properties•Implications of constraint theory and bond percolation for new low-k dielectrics
doi_str_mv 10.1016/j.jnoncrysol.2013.07.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651406369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309313004122</els_id><sourcerecordid>1651406369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-a18ec2e16fa6f37132c544bd5e997a32c0a0b5ee8840512091ea0fe325ec13f23</originalsourceid><addsrcrecordid>eNqFUdFuFCEUJcYmrq3_wIuJD854gZmB8U03aps08cH2mbDsxWXLwAqzbfoHfrZMt9FHCeQewjnnwoEQyqBlwIYP-3YfU7T5saTQcmCiBdkCVy_Iiikpmk4x_pKsADhvBIziFXldyh7qkEKtyO-r6MIRo0WaHI04P6R8RzcpbukBs03BzD5FWue8w2XlyYT3dEK7M9HbBWNAO-cFU1Nl6TA_4UNO1WH2WBbnnf-5ezoO6aG5o6b54dcfL6uhj9T5MJULcuZMKPjmuZ6T269fbtaXzfX3b1frT9eN7To5N4YptBzZ4MzghGSC277rNtsex1GaugMDmx5RqQ56xmFkaMCh4D1aJhwX5-Tdybfe79cRy6wnXyyGYCKmY9Fs6FkHgxjGSlUnqs2plIxOH7KfTH7UDPQSvt7rf-HrJXwNUtfwq_TtcxdTahgum2h9-avnUgnJx77yPp94WJ987zHrYv3yG1ufa6p6m_z_m_0BX0ahjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651406369</pqid></control><display><type>article</type><title>Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films</title><source>Elsevier ScienceDirect Journals Complete</source><creator>King, Sean W. ; Bielefeld, Jeff ; Xu, Guanghai ; Lanford, William A. ; Matsuda, Yusuke ; Dauskardt, Reinhold H. ; Kim, Namjun ; Hondongwa, Donald ; Olasov, Lauren ; Daly, Brian ; Stan, Gheorghe ; Liu, Ming ; Dutta, Dhanadeep ; Gidley, David</creator><creatorcontrib>King, Sean W. ; Bielefeld, Jeff ; Xu, Guanghai ; Lanford, William A. ; Matsuda, Yusuke ; Dauskardt, Reinhold H. ; Kim, Namjun ; Hondongwa, Donald ; Olasov, Lauren ; Daly, Brian ; Stan, Gheorghe ; Liu, Ming ; Dutta, Dhanadeep ; Gidley, David</creatorcontrib><description>As demand for lower power and higher performance nano-electronic products increases, the semiconductor industry must adopt insulating materials with progressively lower dielectric constants (i.e. low-k) in order to minimize capacitive related power losses in integrated circuits. However in addition to a lower dielectric constant, low-k materials typically exhibit many other reduced material properties that have limited the ability of the semiconductor industry to implement them. In this article, we demonstrate that the reduced material properties exhibited by low-k materials can be understood based on bond constraint and percolation theory. Using a-SiC:H as a case study material, we utilize nuclear reaction analysis, Rutherford backscattering, nuclear magnetic resonance and transmission Fourier transform infra-red spectroscopy measurements to determine the average coordination (〈r〉) for these materials. Correlations of 〈r〉 to Young's modulus, hardness, thermal conductivity, resistivity, refractive index, intrinsic stress, mass density and porosity show that an extremely wide range in material properties (in some cases several orders of magnitude) can be achieved through reducing 〈r〉 via the controlled incorporation of terminal SiHx and CHx groups. We also demonstrate that the critical point at 〈r〉≤2.4 predicted by constraint theory exists in this material system and places limitations on the range of properties that can be achieved for future low-k a-SiC:H materials. •Demonstration of bond percolation effects on material properties of a-SiC:H•Observation of singularities in material properties predicted by constraint theory•Experimental validation of theoretical rigidity percolation scaling exponent•Fundamental role of average coordination on low-k dielectric material properties•Implications of constraint theory and bond percolation for new low-k dielectrics</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2013.07.028</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Bond percolation ; Bonding ; Chemical vapor deposition ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Constraint theory ; Demand ; Density ; Dielectric constant ; Dielectric properties of solids and liquids ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Exact sciences and technology ; Low-k ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Nanostructure ; Networks ; Nuclear magnetic resonance and relaxation ; Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of bulk materials and thin films ; Permittivity (dielectric function) ; Physics ; Plasma ; Semiconductors ; Silicon carbide ; Thermal conductivity ; Thin films ; Tribology and hardness</subject><ispartof>Journal of non-crystalline solids, 2013-11, Vol.379, p.67-79</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-a18ec2e16fa6f37132c544bd5e997a32c0a0b5ee8840512091ea0fe325ec13f23</citedby><cites>FETCH-LOGICAL-c447t-a18ec2e16fa6f37132c544bd5e997a32c0a0b5ee8840512091ea0fe325ec13f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnoncrysol.2013.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27837295$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>King, Sean W.</creatorcontrib><creatorcontrib>Bielefeld, Jeff</creatorcontrib><creatorcontrib>Xu, Guanghai</creatorcontrib><creatorcontrib>Lanford, William A.</creatorcontrib><creatorcontrib>Matsuda, Yusuke</creatorcontrib><creatorcontrib>Dauskardt, Reinhold H.</creatorcontrib><creatorcontrib>Kim, Namjun</creatorcontrib><creatorcontrib>Hondongwa, Donald</creatorcontrib><creatorcontrib>Olasov, Lauren</creatorcontrib><creatorcontrib>Daly, Brian</creatorcontrib><creatorcontrib>Stan, Gheorghe</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Dutta, Dhanadeep</creatorcontrib><creatorcontrib>Gidley, David</creatorcontrib><title>Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films</title><title>Journal of non-crystalline solids</title><description>As demand for lower power and higher performance nano-electronic products increases, the semiconductor industry must adopt insulating materials with progressively lower dielectric constants (i.e. low-k) in order to minimize capacitive related power losses in integrated circuits. However in addition to a lower dielectric constant, low-k materials typically exhibit many other reduced material properties that have limited the ability of the semiconductor industry to implement them. In this article, we demonstrate that the reduced material properties exhibited by low-k materials can be understood based on bond constraint and percolation theory. Using a-SiC:H as a case study material, we utilize nuclear reaction analysis, Rutherford backscattering, nuclear magnetic resonance and transmission Fourier transform infra-red spectroscopy measurements to determine the average coordination (〈r〉) for these materials. Correlations of 〈r〉 to Young's modulus, hardness, thermal conductivity, resistivity, refractive index, intrinsic stress, mass density and porosity show that an extremely wide range in material properties (in some cases several orders of magnitude) can be achieved through reducing 〈r〉 via the controlled incorporation of terminal SiHx and CHx groups. We also demonstrate that the critical point at 〈r〉≤2.4 predicted by constraint theory exists in this material system and places limitations on the range of properties that can be achieved for future low-k a-SiC:H materials. •Demonstration of bond percolation effects on material properties of a-SiC:H•Observation of singularities in material properties predicted by constraint theory•Experimental validation of theoretical rigidity percolation scaling exponent•Fundamental role of average coordination on low-k dielectric material properties•Implications of constraint theory and bond percolation for new low-k dielectrics</description><subject>Bond percolation</subject><subject>Bonding</subject><subject>Chemical vapor deposition</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Constraint theory</subject><subject>Demand</subject><subject>Density</subject><subject>Dielectric constant</subject><subject>Dielectric properties of solids and liquids</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Exact sciences and technology</subject><subject>Low-k</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Nuclear magnetic resonance and relaxation</subject><subject>Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of bulk materials and thin films</subject><subject>Permittivity (dielectric function)</subject><subject>Physics</subject><subject>Plasma</subject><subject>Semiconductors</subject><subject>Silicon carbide</subject><subject>Thermal conductivity</subject><subject>Thin films</subject><subject>Tribology and hardness</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUdFuFCEUJcYmrq3_wIuJD854gZmB8U03aps08cH2mbDsxWXLwAqzbfoHfrZMt9FHCeQewjnnwoEQyqBlwIYP-3YfU7T5saTQcmCiBdkCVy_Iiikpmk4x_pKsADhvBIziFXldyh7qkEKtyO-r6MIRo0WaHI04P6R8RzcpbukBs03BzD5FWue8w2XlyYT3dEK7M9HbBWNAO-cFU1Nl6TA_4UNO1WH2WBbnnf-5ezoO6aG5o6b54dcfL6uhj9T5MJULcuZMKPjmuZ6T269fbtaXzfX3b1frT9eN7To5N4YptBzZ4MzghGSC277rNtsex1GaugMDmx5RqQ56xmFkaMCh4D1aJhwX5-Tdybfe79cRy6wnXyyGYCKmY9Fs6FkHgxjGSlUnqs2plIxOH7KfTH7UDPQSvt7rf-HrJXwNUtfwq_TtcxdTahgum2h9-avnUgnJx77yPp94WJ987zHrYv3yG1ufa6p6m_z_m_0BX0ahjQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>King, Sean W.</creator><creator>Bielefeld, Jeff</creator><creator>Xu, Guanghai</creator><creator>Lanford, William A.</creator><creator>Matsuda, Yusuke</creator><creator>Dauskardt, Reinhold H.</creator><creator>Kim, Namjun</creator><creator>Hondongwa, Donald</creator><creator>Olasov, Lauren</creator><creator>Daly, Brian</creator><creator>Stan, Gheorghe</creator><creator>Liu, Ming</creator><creator>Dutta, Dhanadeep</creator><creator>Gidley, David</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films</title><author>King, Sean W. ; Bielefeld, Jeff ; Xu, Guanghai ; Lanford, William A. ; Matsuda, Yusuke ; Dauskardt, Reinhold H. ; Kim, Namjun ; Hondongwa, Donald ; Olasov, Lauren ; Daly, Brian ; Stan, Gheorghe ; Liu, Ming ; Dutta, Dhanadeep ; Gidley, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-a18ec2e16fa6f37132c544bd5e997a32c0a0b5ee8840512091ea0fe325ec13f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bond percolation</topic><topic>Bonding</topic><topic>Chemical vapor deposition</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Constraint theory</topic><topic>Demand</topic><topic>Density</topic><topic>Dielectric constant</topic><topic>Dielectric properties of solids and liquids</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Exact sciences and technology</topic><topic>Low-k</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Nuclear magnetic resonance and relaxation</topic><topic>Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of bulk materials and thin films</topic><topic>Permittivity (dielectric function)</topic><topic>Physics</topic><topic>Plasma</topic><topic>Semiconductors</topic><topic>Silicon carbide</topic><topic>Thermal conductivity</topic><topic>Thin films</topic><topic>Tribology and hardness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Sean W.</creatorcontrib><creatorcontrib>Bielefeld, Jeff</creatorcontrib><creatorcontrib>Xu, Guanghai</creatorcontrib><creatorcontrib>Lanford, William A.</creatorcontrib><creatorcontrib>Matsuda, Yusuke</creatorcontrib><creatorcontrib>Dauskardt, Reinhold H.</creatorcontrib><creatorcontrib>Kim, Namjun</creatorcontrib><creatorcontrib>Hondongwa, Donald</creatorcontrib><creatorcontrib>Olasov, Lauren</creatorcontrib><creatorcontrib>Daly, Brian</creatorcontrib><creatorcontrib>Stan, Gheorghe</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Dutta, Dhanadeep</creatorcontrib><creatorcontrib>Gidley, David</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Sean W.</au><au>Bielefeld, Jeff</au><au>Xu, Guanghai</au><au>Lanford, William A.</au><au>Matsuda, Yusuke</au><au>Dauskardt, Reinhold H.</au><au>Kim, Namjun</au><au>Hondongwa, Donald</au><au>Olasov, Lauren</au><au>Daly, Brian</au><au>Stan, Gheorghe</au><au>Liu, Ming</au><au>Dutta, Dhanadeep</au><au>Gidley, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>379</volume><spage>67</spage><epage>79</epage><pages>67-79</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>As demand for lower power and higher performance nano-electronic products increases, the semiconductor industry must adopt insulating materials with progressively lower dielectric constants (i.e. low-k) in order to minimize capacitive related power losses in integrated circuits. However in addition to a lower dielectric constant, low-k materials typically exhibit many other reduced material properties that have limited the ability of the semiconductor industry to implement them. In this article, we demonstrate that the reduced material properties exhibited by low-k materials can be understood based on bond constraint and percolation theory. Using a-SiC:H as a case study material, we utilize nuclear reaction analysis, Rutherford backscattering, nuclear magnetic resonance and transmission Fourier transform infra-red spectroscopy measurements to determine the average coordination (〈r〉) for these materials. Correlations of 〈r〉 to Young's modulus, hardness, thermal conductivity, resistivity, refractive index, intrinsic stress, mass density and porosity show that an extremely wide range in material properties (in some cases several orders of magnitude) can be achieved through reducing 〈r〉 via the controlled incorporation of terminal SiHx and CHx groups. We also demonstrate that the critical point at 〈r〉≤2.4 predicted by constraint theory exists in this material system and places limitations on the range of properties that can be achieved for future low-k a-SiC:H materials. •Demonstration of bond percolation effects on material properties of a-SiC:H•Observation of singularities in material properties predicted by constraint theory•Experimental validation of theoretical rigidity percolation scaling exponent•Fundamental role of average coordination on low-k dielectric material properties•Implications of constraint theory and bond percolation for new low-k dielectrics</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2013.07.028</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2013-11, Vol.379, p.67-79
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_1651406369
source Elsevier ScienceDirect Journals Complete
subjects Bond percolation
Bonding
Chemical vapor deposition
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Constraint theory
Demand
Density
Dielectric constant
Dielectric properties of solids and liquids
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Exact sciences and technology
Low-k
Magnetic resonances and relaxations in condensed matter, mössbauer effect
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Nanostructure
Networks
Nuclear magnetic resonance and relaxation
Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of bulk materials and thin films
Permittivity (dielectric function)
Physics
Plasma
Semiconductors
Silicon carbide
Thermal conductivity
Thin films
Tribology and hardness
title Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20network%20bond%20percolation%20on%20the%20thermal,%20mechanical,%20electrical%20and%20optical%20properties%20of%20high%20and%20low-k%20a-SiC:H%20thin%20films&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=King,%20Sean%20W.&rft.date=2013-11-01&rft.volume=379&rft.spage=67&rft.epage=79&rft.pages=67-79&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2013.07.028&rft_dat=%3Cproquest_cross%3E1651406369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651406369&rft_id=info:pmid/&rft_els_id=S0022309313004122&rfr_iscdi=true