Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films
As demand for lower power and higher performance nano-electronic products increases, the semiconductor industry must adopt insulating materials with progressively lower dielectric constants (i.e. low-k) in order to minimize capacitive related power losses in integrated circuits. However in addition...
Gespeichert in:
Veröffentlicht in: | Journal of non-crystalline solids 2013-11, Vol.379, p.67-79 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | |
container_start_page | 67 |
container_title | Journal of non-crystalline solids |
container_volume | 379 |
creator | King, Sean W. Bielefeld, Jeff Xu, Guanghai Lanford, William A. Matsuda, Yusuke Dauskardt, Reinhold H. Kim, Namjun Hondongwa, Donald Olasov, Lauren Daly, Brian Stan, Gheorghe Liu, Ming Dutta, Dhanadeep Gidley, David |
description | As demand for lower power and higher performance nano-electronic products increases, the semiconductor industry must adopt insulating materials with progressively lower dielectric constants (i.e. low-k) in order to minimize capacitive related power losses in integrated circuits. However in addition to a lower dielectric constant, low-k materials typically exhibit many other reduced material properties that have limited the ability of the semiconductor industry to implement them. In this article, we demonstrate that the reduced material properties exhibited by low-k materials can be understood based on bond constraint and percolation theory. Using a-SiC:H as a case study material, we utilize nuclear reaction analysis, Rutherford backscattering, nuclear magnetic resonance and transmission Fourier transform infra-red spectroscopy measurements to determine the average coordination (〈r〉) for these materials. Correlations of 〈r〉 to Young's modulus, hardness, thermal conductivity, resistivity, refractive index, intrinsic stress, mass density and porosity show that an extremely wide range in material properties (in some cases several orders of magnitude) can be achieved through reducing 〈r〉 via the controlled incorporation of terminal SiHx and CHx groups. We also demonstrate that the critical point at 〈r〉≤2.4 predicted by constraint theory exists in this material system and places limitations on the range of properties that can be achieved for future low-k a-SiC:H materials.
•Demonstration of bond percolation effects on material properties of a-SiC:H•Observation of singularities in material properties predicted by constraint theory•Experimental validation of theoretical rigidity percolation scaling exponent•Fundamental role of average coordination on low-k dielectric material properties•Implications of constraint theory and bond percolation for new low-k dielectrics |
doi_str_mv | 10.1016/j.jnoncrysol.2013.07.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651406369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309313004122</els_id><sourcerecordid>1651406369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-a18ec2e16fa6f37132c544bd5e997a32c0a0b5ee8840512091ea0fe325ec13f23</originalsourceid><addsrcrecordid>eNqFUdFuFCEUJcYmrq3_wIuJD854gZmB8U03aps08cH2mbDsxWXLwAqzbfoHfrZMt9FHCeQewjnnwoEQyqBlwIYP-3YfU7T5saTQcmCiBdkCVy_Iiikpmk4x_pKsADhvBIziFXldyh7qkEKtyO-r6MIRo0WaHI04P6R8RzcpbukBs03BzD5FWue8w2XlyYT3dEK7M9HbBWNAO-cFU1Nl6TA_4UNO1WH2WBbnnf-5ezoO6aG5o6b54dcfL6uhj9T5MJULcuZMKPjmuZ6T269fbtaXzfX3b1frT9eN7To5N4YptBzZ4MzghGSC277rNtsex1GaugMDmx5RqQ56xmFkaMCh4D1aJhwX5-Tdybfe79cRy6wnXyyGYCKmY9Fs6FkHgxjGSlUnqs2plIxOH7KfTH7UDPQSvt7rf-HrJXwNUtfwq_TtcxdTahgum2h9-avnUgnJx77yPp94WJ987zHrYv3yG1ufa6p6m_z_m_0BX0ahjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651406369</pqid></control><display><type>article</type><title>Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films</title><source>Elsevier ScienceDirect Journals Complete</source><creator>King, Sean W. ; Bielefeld, Jeff ; Xu, Guanghai ; Lanford, William A. ; Matsuda, Yusuke ; Dauskardt, Reinhold H. ; Kim, Namjun ; Hondongwa, Donald ; Olasov, Lauren ; Daly, Brian ; Stan, Gheorghe ; Liu, Ming ; Dutta, Dhanadeep ; Gidley, David</creator><creatorcontrib>King, Sean W. ; Bielefeld, Jeff ; Xu, Guanghai ; Lanford, William A. ; Matsuda, Yusuke ; Dauskardt, Reinhold H. ; Kim, Namjun ; Hondongwa, Donald ; Olasov, Lauren ; Daly, Brian ; Stan, Gheorghe ; Liu, Ming ; Dutta, Dhanadeep ; Gidley, David</creatorcontrib><description>As demand for lower power and higher performance nano-electronic products increases, the semiconductor industry must adopt insulating materials with progressively lower dielectric constants (i.e. low-k) in order to minimize capacitive related power losses in integrated circuits. However in addition to a lower dielectric constant, low-k materials typically exhibit many other reduced material properties that have limited the ability of the semiconductor industry to implement them. In this article, we demonstrate that the reduced material properties exhibited by low-k materials can be understood based on bond constraint and percolation theory. Using a-SiC:H as a case study material, we utilize nuclear reaction analysis, Rutherford backscattering, nuclear magnetic resonance and transmission Fourier transform infra-red spectroscopy measurements to determine the average coordination (〈r〉) for these materials. Correlations of 〈r〉 to Young's modulus, hardness, thermal conductivity, resistivity, refractive index, intrinsic stress, mass density and porosity show that an extremely wide range in material properties (in some cases several orders of magnitude) can be achieved through reducing 〈r〉 via the controlled incorporation of terminal SiHx and CHx groups. We also demonstrate that the critical point at 〈r〉≤2.4 predicted by constraint theory exists in this material system and places limitations on the range of properties that can be achieved for future low-k a-SiC:H materials.
•Demonstration of bond percolation effects on material properties of a-SiC:H•Observation of singularities in material properties predicted by constraint theory•Experimental validation of theoretical rigidity percolation scaling exponent•Fundamental role of average coordination on low-k dielectric material properties•Implications of constraint theory and bond percolation for new low-k dielectrics</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2013.07.028</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Bond percolation ; Bonding ; Chemical vapor deposition ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Constraint theory ; Demand ; Density ; Dielectric constant ; Dielectric properties of solids and liquids ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Exact sciences and technology ; Low-k ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Nanostructure ; Networks ; Nuclear magnetic resonance and relaxation ; Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of bulk materials and thin films ; Permittivity (dielectric function) ; Physics ; Plasma ; Semiconductors ; Silicon carbide ; Thermal conductivity ; Thin films ; Tribology and hardness</subject><ispartof>Journal of non-crystalline solids, 2013-11, Vol.379, p.67-79</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-a18ec2e16fa6f37132c544bd5e997a32c0a0b5ee8840512091ea0fe325ec13f23</citedby><cites>FETCH-LOGICAL-c447t-a18ec2e16fa6f37132c544bd5e997a32c0a0b5ee8840512091ea0fe325ec13f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnoncrysol.2013.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27837295$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>King, Sean W.</creatorcontrib><creatorcontrib>Bielefeld, Jeff</creatorcontrib><creatorcontrib>Xu, Guanghai</creatorcontrib><creatorcontrib>Lanford, William A.</creatorcontrib><creatorcontrib>Matsuda, Yusuke</creatorcontrib><creatorcontrib>Dauskardt, Reinhold H.</creatorcontrib><creatorcontrib>Kim, Namjun</creatorcontrib><creatorcontrib>Hondongwa, Donald</creatorcontrib><creatorcontrib>Olasov, Lauren</creatorcontrib><creatorcontrib>Daly, Brian</creatorcontrib><creatorcontrib>Stan, Gheorghe</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Dutta, Dhanadeep</creatorcontrib><creatorcontrib>Gidley, David</creatorcontrib><title>Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films</title><title>Journal of non-crystalline solids</title><description>As demand for lower power and higher performance nano-electronic products increases, the semiconductor industry must adopt insulating materials with progressively lower dielectric constants (i.e. low-k) in order to minimize capacitive related power losses in integrated circuits. However in addition to a lower dielectric constant, low-k materials typically exhibit many other reduced material properties that have limited the ability of the semiconductor industry to implement them. In this article, we demonstrate that the reduced material properties exhibited by low-k materials can be understood based on bond constraint and percolation theory. Using a-SiC:H as a case study material, we utilize nuclear reaction analysis, Rutherford backscattering, nuclear magnetic resonance and transmission Fourier transform infra-red spectroscopy measurements to determine the average coordination (〈r〉) for these materials. Correlations of 〈r〉 to Young's modulus, hardness, thermal conductivity, resistivity, refractive index, intrinsic stress, mass density and porosity show that an extremely wide range in material properties (in some cases several orders of magnitude) can be achieved through reducing 〈r〉 via the controlled incorporation of terminal SiHx and CHx groups. We also demonstrate that the critical point at 〈r〉≤2.4 predicted by constraint theory exists in this material system and places limitations on the range of properties that can be achieved for future low-k a-SiC:H materials.
•Demonstration of bond percolation effects on material properties of a-SiC:H•Observation of singularities in material properties predicted by constraint theory•Experimental validation of theoretical rigidity percolation scaling exponent•Fundamental role of average coordination on low-k dielectric material properties•Implications of constraint theory and bond percolation for new low-k dielectrics</description><subject>Bond percolation</subject><subject>Bonding</subject><subject>Chemical vapor deposition</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Constraint theory</subject><subject>Demand</subject><subject>Density</subject><subject>Dielectric constant</subject><subject>Dielectric properties of solids and liquids</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Exact sciences and technology</subject><subject>Low-k</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Nuclear magnetic resonance and relaxation</subject><subject>Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of bulk materials and thin films</subject><subject>Permittivity (dielectric function)</subject><subject>Physics</subject><subject>Plasma</subject><subject>Semiconductors</subject><subject>Silicon carbide</subject><subject>Thermal conductivity</subject><subject>Thin films</subject><subject>Tribology and hardness</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUdFuFCEUJcYmrq3_wIuJD854gZmB8U03aps08cH2mbDsxWXLwAqzbfoHfrZMt9FHCeQewjnnwoEQyqBlwIYP-3YfU7T5saTQcmCiBdkCVy_Iiikpmk4x_pKsADhvBIziFXldyh7qkEKtyO-r6MIRo0WaHI04P6R8RzcpbukBs03BzD5FWue8w2XlyYT3dEK7M9HbBWNAO-cFU1Nl6TA_4UNO1WH2WBbnnf-5ezoO6aG5o6b54dcfL6uhj9T5MJULcuZMKPjmuZ6T269fbtaXzfX3b1frT9eN7To5N4YptBzZ4MzghGSC277rNtsex1GaugMDmx5RqQ56xmFkaMCh4D1aJhwX5-Tdybfe79cRy6wnXyyGYCKmY9Fs6FkHgxjGSlUnqs2plIxOH7KfTH7UDPQSvt7rf-HrJXwNUtfwq_TtcxdTahgum2h9-avnUgnJx77yPp94WJ987zHrYv3yG1ufa6p6m_z_m_0BX0ahjQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>King, Sean W.</creator><creator>Bielefeld, Jeff</creator><creator>Xu, Guanghai</creator><creator>Lanford, William A.</creator><creator>Matsuda, Yusuke</creator><creator>Dauskardt, Reinhold H.</creator><creator>Kim, Namjun</creator><creator>Hondongwa, Donald</creator><creator>Olasov, Lauren</creator><creator>Daly, Brian</creator><creator>Stan, Gheorghe</creator><creator>Liu, Ming</creator><creator>Dutta, Dhanadeep</creator><creator>Gidley, David</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films</title><author>King, Sean W. ; Bielefeld, Jeff ; Xu, Guanghai ; Lanford, William A. ; Matsuda, Yusuke ; Dauskardt, Reinhold H. ; Kim, Namjun ; Hondongwa, Donald ; Olasov, Lauren ; Daly, Brian ; Stan, Gheorghe ; Liu, Ming ; Dutta, Dhanadeep ; Gidley, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-a18ec2e16fa6f37132c544bd5e997a32c0a0b5ee8840512091ea0fe325ec13f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bond percolation</topic><topic>Bonding</topic><topic>Chemical vapor deposition</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Constraint theory</topic><topic>Demand</topic><topic>Density</topic><topic>Dielectric constant</topic><topic>Dielectric properties of solids and liquids</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Exact sciences and technology</topic><topic>Low-k</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Nuclear magnetic resonance and relaxation</topic><topic>Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of bulk materials and thin films</topic><topic>Permittivity (dielectric function)</topic><topic>Physics</topic><topic>Plasma</topic><topic>Semiconductors</topic><topic>Silicon carbide</topic><topic>Thermal conductivity</topic><topic>Thin films</topic><topic>Tribology and hardness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Sean W.</creatorcontrib><creatorcontrib>Bielefeld, Jeff</creatorcontrib><creatorcontrib>Xu, Guanghai</creatorcontrib><creatorcontrib>Lanford, William A.</creatorcontrib><creatorcontrib>Matsuda, Yusuke</creatorcontrib><creatorcontrib>Dauskardt, Reinhold H.</creatorcontrib><creatorcontrib>Kim, Namjun</creatorcontrib><creatorcontrib>Hondongwa, Donald</creatorcontrib><creatorcontrib>Olasov, Lauren</creatorcontrib><creatorcontrib>Daly, Brian</creatorcontrib><creatorcontrib>Stan, Gheorghe</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Dutta, Dhanadeep</creatorcontrib><creatorcontrib>Gidley, David</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Sean W.</au><au>Bielefeld, Jeff</au><au>Xu, Guanghai</au><au>Lanford, William A.</au><au>Matsuda, Yusuke</au><au>Dauskardt, Reinhold H.</au><au>Kim, Namjun</au><au>Hondongwa, Donald</au><au>Olasov, Lauren</au><au>Daly, Brian</au><au>Stan, Gheorghe</au><au>Liu, Ming</au><au>Dutta, Dhanadeep</au><au>Gidley, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>379</volume><spage>67</spage><epage>79</epage><pages>67-79</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>As demand for lower power and higher performance nano-electronic products increases, the semiconductor industry must adopt insulating materials with progressively lower dielectric constants (i.e. low-k) in order to minimize capacitive related power losses in integrated circuits. However in addition to a lower dielectric constant, low-k materials typically exhibit many other reduced material properties that have limited the ability of the semiconductor industry to implement them. In this article, we demonstrate that the reduced material properties exhibited by low-k materials can be understood based on bond constraint and percolation theory. Using a-SiC:H as a case study material, we utilize nuclear reaction analysis, Rutherford backscattering, nuclear magnetic resonance and transmission Fourier transform infra-red spectroscopy measurements to determine the average coordination (〈r〉) for these materials. Correlations of 〈r〉 to Young's modulus, hardness, thermal conductivity, resistivity, refractive index, intrinsic stress, mass density and porosity show that an extremely wide range in material properties (in some cases several orders of magnitude) can be achieved through reducing 〈r〉 via the controlled incorporation of terminal SiHx and CHx groups. We also demonstrate that the critical point at 〈r〉≤2.4 predicted by constraint theory exists in this material system and places limitations on the range of properties that can be achieved for future low-k a-SiC:H materials.
•Demonstration of bond percolation effects on material properties of a-SiC:H•Observation of singularities in material properties predicted by constraint theory•Experimental validation of theoretical rigidity percolation scaling exponent•Fundamental role of average coordination on low-k dielectric material properties•Implications of constraint theory and bond percolation for new low-k dielectrics</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2013.07.028</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3093 |
ispartof | Journal of non-crystalline solids, 2013-11, Vol.379, p.67-79 |
issn | 0022-3093 1873-4812 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651406369 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bond percolation Bonding Chemical vapor deposition Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Constraint theory Demand Density Dielectric constant Dielectric properties of solids and liquids Dielectrics, piezoelectrics, and ferroelectrics and their properties Exact sciences and technology Low-k Magnetic resonances and relaxations in condensed matter, mössbauer effect Mechanical and acoustical properties of condensed matter Mechanical properties of solids Nanostructure Networks Nuclear magnetic resonance and relaxation Optical constants: refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of bulk materials and thin films Permittivity (dielectric function) Physics Plasma Semiconductors Silicon carbide Thermal conductivity Thin films Tribology and hardness |
title | Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20network%20bond%20percolation%20on%20the%20thermal,%20mechanical,%20electrical%20and%20optical%20properties%20of%20high%20and%20low-k%20a-SiC:H%20thin%20films&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=King,%20Sean%20W.&rft.date=2013-11-01&rft.volume=379&rft.spage=67&rft.epage=79&rft.pages=67-79&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2013.07.028&rft_dat=%3Cproquest_cross%3E1651406369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651406369&rft_id=info:pmid/&rft_els_id=S0022309313004122&rfr_iscdi=true |