Fuzzy reasoning method by optimizing the similarity of truth-tables

This paper presents a new fuzzy reasoning method by optimizing the similarity of truth-tables (OS method for short). Its basic idea is to find a fuzzy set such that the truth-tables generated by the antecedent rule and the consequent rule are as similar as possible. Based on this idea, the principle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2014-12, Vol.288, p.290-313
Hauptverfasser: Deng, Guannan, Jiang, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue
container_start_page 290
container_title Information sciences
container_volume 288
creator Deng, Guannan
Jiang, Yanli
description This paper presents a new fuzzy reasoning method by optimizing the similarity of truth-tables (OS method for short). Its basic idea is to find a fuzzy set such that the truth-tables generated by the antecedent rule and the consequent rule are as similar as possible. Based on this idea, the principle of OS method and the fuzzy reasoning with OS method are given and discussed. And then the OS methods with certain similarity measure and several fuzzy implications are investigated. Finally, numerical examples are analyzed to compare the proposed method with compositional rule of inference (CRI) method.
doi_str_mv 10.1016/j.ins.2014.08.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651406112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025514007956</els_id><sourcerecordid>1651406112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-bb809b6f52bbe6bdd096cfa621fb1b1ea2f183b9eed0ba90209fdc7502c882a53</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFTtesFSc08SVN4gLnKEkdlqkfI0mRtl9PpnHmZNl-X-v1w9gtQoGA4n5buCEUHHBRQF0AiDM2w3rJc8EbPGczAA458Kq6ZFchbAFgsRRixlbP0-GwzzypMA5u-Mp6ipuxzfQ-G3fR9e5wHMYNZSE1nfIupo3Nop_iJo9KdxSu2YVVXaCbvzpnn89PH6vXfP3-8rZ6XOemLCHmWtfQaGErrjUJ3bbQCGOV4Gg1aiTFLdalboha0KpJgRvbmmUF3NQ1V1U5Z3enuzs_fk8UouxdMNR1aqBxChJFhQsQiDxJ8SQ1fgzBk5U773rl9xJBHoHJrUzA5BGYhFomYMnzcPJQ-uHHkZfBOBoMtc6TibId3T_uX1CFdME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651406112</pqid></control><display><type>article</type><title>Fuzzy reasoning method by optimizing the similarity of truth-tables</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Deng, Guannan ; Jiang, Yanli</creator><creatorcontrib>Deng, Guannan ; Jiang, Yanli</creatorcontrib><description>This paper presents a new fuzzy reasoning method by optimizing the similarity of truth-tables (OS method for short). Its basic idea is to find a fuzzy set such that the truth-tables generated by the antecedent rule and the consequent rule are as similar as possible. Based on this idea, the principle of OS method and the fuzzy reasoning with OS method are given and discussed. And then the OS methods with certain similarity measure and several fuzzy implications are investigated. Finally, numerical examples are analyzed to compare the proposed method with compositional rule of inference (CRI) method.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2014.08.006</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Fuzzy ; Fuzzy logic ; Fuzzy reasoning ; Fuzzy set theory ; Inference ; Mathematical models ; Operating systems ; Optimization ; Similarity ; Truth-table</subject><ispartof>Information sciences, 2014-12, Vol.288, p.290-313</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-bb809b6f52bbe6bdd096cfa621fb1b1ea2f183b9eed0ba90209fdc7502c882a53</citedby><cites>FETCH-LOGICAL-c330t-bb809b6f52bbe6bdd096cfa621fb1b1ea2f183b9eed0ba90209fdc7502c882a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2014.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Deng, Guannan</creatorcontrib><creatorcontrib>Jiang, Yanli</creatorcontrib><title>Fuzzy reasoning method by optimizing the similarity of truth-tables</title><title>Information sciences</title><description>This paper presents a new fuzzy reasoning method by optimizing the similarity of truth-tables (OS method for short). Its basic idea is to find a fuzzy set such that the truth-tables generated by the antecedent rule and the consequent rule are as similar as possible. Based on this idea, the principle of OS method and the fuzzy reasoning with OS method are given and discussed. And then the OS methods with certain similarity measure and several fuzzy implications are investigated. Finally, numerical examples are analyzed to compare the proposed method with compositional rule of inference (CRI) method.</description><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy reasoning</subject><subject>Fuzzy set theory</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Operating systems</subject><subject>Optimization</subject><subject>Similarity</subject><subject>Truth-table</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFTtesFSc08SVN4gLnKEkdlqkfI0mRtl9PpnHmZNl-X-v1w9gtQoGA4n5buCEUHHBRQF0AiDM2w3rJc8EbPGczAA458Kq6ZFchbAFgsRRixlbP0-GwzzypMA5u-Mp6ipuxzfQ-G3fR9e5wHMYNZSE1nfIupo3Nop_iJo9KdxSu2YVVXaCbvzpnn89PH6vXfP3-8rZ6XOemLCHmWtfQaGErrjUJ3bbQCGOV4Gg1aiTFLdalboha0KpJgRvbmmUF3NQ1V1U5Z3enuzs_fk8UouxdMNR1aqBxChJFhQsQiDxJ8SQ1fgzBk5U773rl9xJBHoHJrUzA5BGYhFomYMnzcPJQ-uHHkZfBOBoMtc6TibId3T_uX1CFdME</recordid><startdate>20141220</startdate><enddate>20141220</enddate><creator>Deng, Guannan</creator><creator>Jiang, Yanli</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141220</creationdate><title>Fuzzy reasoning method by optimizing the similarity of truth-tables</title><author>Deng, Guannan ; Jiang, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-bb809b6f52bbe6bdd096cfa621fb1b1ea2f183b9eed0ba90209fdc7502c882a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy reasoning</topic><topic>Fuzzy set theory</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Operating systems</topic><topic>Optimization</topic><topic>Similarity</topic><topic>Truth-table</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Guannan</creatorcontrib><creatorcontrib>Jiang, Yanli</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Guannan</au><au>Jiang, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy reasoning method by optimizing the similarity of truth-tables</atitle><jtitle>Information sciences</jtitle><date>2014-12-20</date><risdate>2014</risdate><volume>288</volume><spage>290</spage><epage>313</epage><pages>290-313</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper presents a new fuzzy reasoning method by optimizing the similarity of truth-tables (OS method for short). Its basic idea is to find a fuzzy set such that the truth-tables generated by the antecedent rule and the consequent rule are as similar as possible. Based on this idea, the principle of OS method and the fuzzy reasoning with OS method are given and discussed. And then the OS methods with certain similarity measure and several fuzzy implications are investigated. Finally, numerical examples are analyzed to compare the proposed method with compositional rule of inference (CRI) method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2014.08.006</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2014-12, Vol.288, p.290-313
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1651406112
source Elsevier ScienceDirect Journals Complete
subjects Fuzzy
Fuzzy logic
Fuzzy reasoning
Fuzzy set theory
Inference
Mathematical models
Operating systems
Optimization
Similarity
Truth-table
title Fuzzy reasoning method by optimizing the similarity of truth-tables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20reasoning%20method%20by%20optimizing%20the%20similarity%20of%20truth-tables&rft.jtitle=Information%20sciences&rft.au=Deng,%20Guannan&rft.date=2014-12-20&rft.volume=288&rft.spage=290&rft.epage=313&rft.pages=290-313&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2014.08.006&rft_dat=%3Cproquest_cross%3E1651406112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651406112&rft_id=info:pmid/&rft_els_id=S0020025514007956&rfr_iscdi=true