Fuzzy reasoning method by optimizing the similarity of truth-tables
This paper presents a new fuzzy reasoning method by optimizing the similarity of truth-tables (OS method for short). Its basic idea is to find a fuzzy set such that the truth-tables generated by the antecedent rule and the consequent rule are as similar as possible. Based on this idea, the principle...
Gespeichert in:
Veröffentlicht in: | Information sciences 2014-12, Vol.288, p.290-313 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | |
container_start_page | 290 |
container_title | Information sciences |
container_volume | 288 |
creator | Deng, Guannan Jiang, Yanli |
description | This paper presents a new fuzzy reasoning method by optimizing the similarity of truth-tables (OS method for short). Its basic idea is to find a fuzzy set such that the truth-tables generated by the antecedent rule and the consequent rule are as similar as possible. Based on this idea, the principle of OS method and the fuzzy reasoning with OS method are given and discussed. And then the OS methods with certain similarity measure and several fuzzy implications are investigated. Finally, numerical examples are analyzed to compare the proposed method with compositional rule of inference (CRI) method. |
doi_str_mv | 10.1016/j.ins.2014.08.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651406112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025514007956</els_id><sourcerecordid>1651406112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-bb809b6f52bbe6bdd096cfa621fb1b1ea2f183b9eed0ba90209fdc7502c882a53</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFTtesFSc08SVN4gLnKEkdlqkfI0mRtl9PpnHmZNl-X-v1w9gtQoGA4n5buCEUHHBRQF0AiDM2w3rJc8EbPGczAA458Kq6ZFchbAFgsRRixlbP0-GwzzypMA5u-Mp6ipuxzfQ-G3fR9e5wHMYNZSE1nfIupo3Nop_iJo9KdxSu2YVVXaCbvzpnn89PH6vXfP3-8rZ6XOemLCHmWtfQaGErrjUJ3bbQCGOV4Gg1aiTFLdalboha0KpJgRvbmmUF3NQ1V1U5Z3enuzs_fk8UouxdMNR1aqBxChJFhQsQiDxJ8SQ1fgzBk5U773rl9xJBHoHJrUzA5BGYhFomYMnzcPJQ-uHHkZfBOBoMtc6TibId3T_uX1CFdME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651406112</pqid></control><display><type>article</type><title>Fuzzy reasoning method by optimizing the similarity of truth-tables</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Deng, Guannan ; Jiang, Yanli</creator><creatorcontrib>Deng, Guannan ; Jiang, Yanli</creatorcontrib><description>This paper presents a new fuzzy reasoning method by optimizing the similarity of truth-tables (OS method for short). Its basic idea is to find a fuzzy set such that the truth-tables generated by the antecedent rule and the consequent rule are as similar as possible. Based on this idea, the principle of OS method and the fuzzy reasoning with OS method are given and discussed. And then the OS methods with certain similarity measure and several fuzzy implications are investigated. Finally, numerical examples are analyzed to compare the proposed method with compositional rule of inference (CRI) method.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2014.08.006</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Fuzzy ; Fuzzy logic ; Fuzzy reasoning ; Fuzzy set theory ; Inference ; Mathematical models ; Operating systems ; Optimization ; Similarity ; Truth-table</subject><ispartof>Information sciences, 2014-12, Vol.288, p.290-313</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-bb809b6f52bbe6bdd096cfa621fb1b1ea2f183b9eed0ba90209fdc7502c882a53</citedby><cites>FETCH-LOGICAL-c330t-bb809b6f52bbe6bdd096cfa621fb1b1ea2f183b9eed0ba90209fdc7502c882a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2014.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Deng, Guannan</creatorcontrib><creatorcontrib>Jiang, Yanli</creatorcontrib><title>Fuzzy reasoning method by optimizing the similarity of truth-tables</title><title>Information sciences</title><description>This paper presents a new fuzzy reasoning method by optimizing the similarity of truth-tables (OS method for short). Its basic idea is to find a fuzzy set such that the truth-tables generated by the antecedent rule and the consequent rule are as similar as possible. Based on this idea, the principle of OS method and the fuzzy reasoning with OS method are given and discussed. And then the OS methods with certain similarity measure and several fuzzy implications are investigated. Finally, numerical examples are analyzed to compare the proposed method with compositional rule of inference (CRI) method.</description><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy reasoning</subject><subject>Fuzzy set theory</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Operating systems</subject><subject>Optimization</subject><subject>Similarity</subject><subject>Truth-table</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFTtesFSc08SVN4gLnKEkdlqkfI0mRtl9PpnHmZNl-X-v1w9gtQoGA4n5buCEUHHBRQF0AiDM2w3rJc8EbPGczAA458Kq6ZFchbAFgsRRixlbP0-GwzzypMA5u-Mp6ipuxzfQ-G3fR9e5wHMYNZSE1nfIupo3Nop_iJo9KdxSu2YVVXaCbvzpnn89PH6vXfP3-8rZ6XOemLCHmWtfQaGErrjUJ3bbQCGOV4Gg1aiTFLdalboha0KpJgRvbmmUF3NQ1V1U5Z3enuzs_fk8UouxdMNR1aqBxChJFhQsQiDxJ8SQ1fgzBk5U773rl9xJBHoHJrUzA5BGYhFomYMnzcPJQ-uHHkZfBOBoMtc6TibId3T_uX1CFdME</recordid><startdate>20141220</startdate><enddate>20141220</enddate><creator>Deng, Guannan</creator><creator>Jiang, Yanli</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141220</creationdate><title>Fuzzy reasoning method by optimizing the similarity of truth-tables</title><author>Deng, Guannan ; Jiang, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-bb809b6f52bbe6bdd096cfa621fb1b1ea2f183b9eed0ba90209fdc7502c882a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy reasoning</topic><topic>Fuzzy set theory</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Operating systems</topic><topic>Optimization</topic><topic>Similarity</topic><topic>Truth-table</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Guannan</creatorcontrib><creatorcontrib>Jiang, Yanli</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Guannan</au><au>Jiang, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy reasoning method by optimizing the similarity of truth-tables</atitle><jtitle>Information sciences</jtitle><date>2014-12-20</date><risdate>2014</risdate><volume>288</volume><spage>290</spage><epage>313</epage><pages>290-313</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper presents a new fuzzy reasoning method by optimizing the similarity of truth-tables (OS method for short). Its basic idea is to find a fuzzy set such that the truth-tables generated by the antecedent rule and the consequent rule are as similar as possible. Based on this idea, the principle of OS method and the fuzzy reasoning with OS method are given and discussed. And then the OS methods with certain similarity measure and several fuzzy implications are investigated. Finally, numerical examples are analyzed to compare the proposed method with compositional rule of inference (CRI) method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2014.08.006</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2014-12, Vol.288, p.290-313 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651406112 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Fuzzy Fuzzy logic Fuzzy reasoning Fuzzy set theory Inference Mathematical models Operating systems Optimization Similarity Truth-table |
title | Fuzzy reasoning method by optimizing the similarity of truth-tables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20reasoning%20method%20by%20optimizing%20the%20similarity%20of%20truth-tables&rft.jtitle=Information%20sciences&rft.au=Deng,%20Guannan&rft.date=2014-12-20&rft.volume=288&rft.spage=290&rft.epage=313&rft.pages=290-313&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2014.08.006&rft_dat=%3Cproquest_cross%3E1651406112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651406112&rft_id=info:pmid/&rft_els_id=S0020025514007956&rfr_iscdi=true |