Leaf Litter Decomposition and Nutrient-Release Characteristics of Several Willow Varieties Within Short-Rotation Coppice Plantations in Saskatchewan, Canada

Quantifying short-rotation coppice (SRC) willow leaf litter dynamics will improve our understanding of carbon (C) sequestration and nutrient cycling potentials within these biomass energy plantations and provide valuable data for model validation. The objective of this study was to quantify the deco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioenergy research 2014-12, Vol.7 (4), p.1074-1090
Hauptverfasser: Hangs, R. D, Schoenau, J. J, Van Rees, K. C. J, Bélanger, N, Volk, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1090
container_issue 4
container_start_page 1074
container_title Bioenergy research
container_volume 7
creator Hangs, R. D
Schoenau, J. J
Van Rees, K. C. J
Bélanger, N
Volk, T
description Quantifying short-rotation coppice (SRC) willow leaf litter dynamics will improve our understanding of carbon (C) sequestration and nutrient cycling potentials within these biomass energy plantations and provide valuable data for model validation. The objective of this study was to quantify the decomposition rate constants (kBᵢₒₘₐₛₛ) and decomposition limit values (LVBᵢₒₘₐₛₛ), along with associated release rates (kNᵤₜᵣᵢₑₙₜ) and release limits (LVNᵤₜᵣᵢₑₙₜ) of nitrogen (N), phosphorus (P), potassium (K), sulphur (S), calcium (Ca), and magnesium (Mg) of leaf litter from several native and exotic willow varieties during an initial 4-year rotation at four sites within Saskatchewan, Canada. The kBᵢₒₘₐₛₛ, LVBᵢₒₘₐₛₛ, kNᵤₜᵣᵢₑₙₜ, and LVNᵤₜᵣᵢₑₙₜvalues varied among the willow varieties, sites, and nutrients, with average values of 1.7 year⁻¹, 79 %, 0.9 year⁻¹, and 83 %, respectively. Tissue N had the smallest kNᵤₜᵣᵢₑₙₜand LVNᵤₜᵣᵢₑₙₜvalues, whereas tissue K and Mg had the largest kNᵤₜᵣᵢₑₙₜand LVNᵤₜᵣᵢₑₙₜvalues, respectively. The leaf litter production varied among willow varieties and sites with an average biomass accumulation of 7.4 Mg ha⁻¹after the 4-year rotation and associated C sequestration rate of 0.2 Mg C ha⁻¹ year⁻¹. The average contribution of nutrients released from leaf litter decomposition during the 4-year rotation to the plant available soil nutrient pool across varieties and sites was 22, 4, 47, 10, 112, and 18 kg ha⁻¹of N, P, K, S, Ca, and Mg, respectively. Principal component analysis identified numerous key relationships between the measured soil, plant tissue, climate, and microclimate variables and observed willow leaf litter decomposition and nutrient-release characteristics. Our findings support the contention that SRC willow leaf litter is capable of enhancing both soil organic C levels and supplementing soil nutrient availability over time.
doi_str_mv 10.1007/s12155-014-9431-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651405418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712239251</galeid><sourcerecordid>A712239251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-fe459b6d6cfd0d2c6010e7625f7e3d096eb727b07a3e6834c43962333823f6183</originalsourceid><addsrcrecordid>eNqNksuKFDEUhgtRcBx9AFcG3LiwxtyrajmUV2hUbEeXIZ066c5YndQkaYd-Fx_WlCXeEJEsEg7f95OEv6ruE3xGMG6eJEKJEDUmvO44I_XxRnVCOtbVhHJ688eZ8dvVnZQuMZaY4-6k-rICbdHK5QwRPQUT9lNILrvgkfYDen3I0YHP9TsYQSdA_U5HbQrsUnYmoWDRGj5D1CP66MYxXKMPuhjZQSqDvHMerXchloCQ9bfYPkyTM4Dejtovo4RmSqdPOpsdXGv_GPXa60HfrW5ZPSa4930_rS6eP3vfv6xXb1686s9XtRGc5doCF91GDtLYAQ_USEwwNJIK2wAbcCdh09BmgxvNQLaMG846SRljLWVWkpadVo-W3CmGqwOkrPYuGRjLDSEckiJSEI4F_y-UCcxpK0lBH_6BXoZD9OUhhaItaWQrmp_UVo-gnLchlw-eQ9V5QyhlHRVz1tlfqLIG2DsTPFhX5r8JZBFMDClFsGqKbq_jURGs5saopTGqNEbNjVHH4tDFSYX1W4i_XPgf0oNFsjoovS29UBdrionAmHSkbTH7CvuozHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1628176857</pqid></control><display><type>article</type><title>Leaf Litter Decomposition and Nutrient-Release Characteristics of Several Willow Varieties Within Short-Rotation Coppice Plantations in Saskatchewan, Canada</title><source>SpringerLink Journals</source><creator>Hangs, R. D ; Schoenau, J. J ; Van Rees, K. C. J ; Bélanger, N ; Volk, T</creator><creatorcontrib>Hangs, R. D ; Schoenau, J. J ; Van Rees, K. C. J ; Bélanger, N ; Volk, T</creatorcontrib><description>Quantifying short-rotation coppice (SRC) willow leaf litter dynamics will improve our understanding of carbon (C) sequestration and nutrient cycling potentials within these biomass energy plantations and provide valuable data for model validation. The objective of this study was to quantify the decomposition rate constants (kBᵢₒₘₐₛₛ) and decomposition limit values (LVBᵢₒₘₐₛₛ), along with associated release rates (kNᵤₜᵣᵢₑₙₜ) and release limits (LVNᵤₜᵣᵢₑₙₜ) of nitrogen (N), phosphorus (P), potassium (K), sulphur (S), calcium (Ca), and magnesium (Mg) of leaf litter from several native and exotic willow varieties during an initial 4-year rotation at four sites within Saskatchewan, Canada. The kBᵢₒₘₐₛₛ, LVBᵢₒₘₐₛₛ, kNᵤₜᵣᵢₑₙₜ, and LVNᵤₜᵣᵢₑₙₜvalues varied among the willow varieties, sites, and nutrients, with average values of 1.7 year⁻¹, 79 %, 0.9 year⁻¹, and 83 %, respectively. Tissue N had the smallest kNᵤₜᵣᵢₑₙₜand LVNᵤₜᵣᵢₑₙₜvalues, whereas tissue K and Mg had the largest kNᵤₜᵣᵢₑₙₜand LVNᵤₜᵣᵢₑₙₜvalues, respectively. The leaf litter production varied among willow varieties and sites with an average biomass accumulation of 7.4 Mg ha⁻¹after the 4-year rotation and associated C sequestration rate of 0.2 Mg C ha⁻¹ year⁻¹. The average contribution of nutrients released from leaf litter decomposition during the 4-year rotation to the plant available soil nutrient pool across varieties and sites was 22, 4, 47, 10, 112, and 18 kg ha⁻¹of N, P, K, S, Ca, and Mg, respectively. Principal component analysis identified numerous key relationships between the measured soil, plant tissue, climate, and microclimate variables and observed willow leaf litter decomposition and nutrient-release characteristics. Our findings support the contention that SRC willow leaf litter is capable of enhancing both soil organic C levels and supplementing soil nutrient availability over time.</description><identifier>ISSN: 1939-1234</identifier><identifier>EISSN: 1939-1242</identifier><identifier>DOI: 10.1007/s12155-014-9431-y</identifier><language>eng</language><publisher>Boston: Springer-Verlag</publisher><subject>Alternative energy sources ; Analysis ; bioenergy ; Biomass ; Biomass energy ; biomass production ; Biomedical and Life Sciences ; calcium ; carbon ; carbon sequestration ; coppicing ; Decomposition ; Environmental conditions ; Leaf litter ; Leaves ; Life Sciences ; Litter ; Magnesium ; Microclimate ; model validation ; nitrogen ; Nutrient availability ; Nutrient cycles ; Nutrient dynamics ; Nutrient release ; Nutrients ; phosphorus ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; plant litter ; Plant Sciences ; Plant tissues ; Plantations ; Plants ; Potassium ; principal component analysis ; Principal components analysis ; Renewable resources ; Reptiles &amp; amphibians ; Soil (material) ; Soil fertility ; Soil nutrients ; soil organic carbon ; Soil sciences ; Studies ; Sulfur ; Trees ; Willow ; Wood Science &amp; Technology</subject><ispartof>Bioenergy research, 2014-12, Vol.7 (4), p.1074-1090</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-fe459b6d6cfd0d2c6010e7625f7e3d096eb727b07a3e6834c43962333823f6183</citedby><cites>FETCH-LOGICAL-c543t-fe459b6d6cfd0d2c6010e7625f7e3d096eb727b07a3e6834c43962333823f6183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12155-014-9431-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12155-014-9431-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hangs, R. D</creatorcontrib><creatorcontrib>Schoenau, J. J</creatorcontrib><creatorcontrib>Van Rees, K. C. J</creatorcontrib><creatorcontrib>Bélanger, N</creatorcontrib><creatorcontrib>Volk, T</creatorcontrib><title>Leaf Litter Decomposition and Nutrient-Release Characteristics of Several Willow Varieties Within Short-Rotation Coppice Plantations in Saskatchewan, Canada</title><title>Bioenergy research</title><addtitle>Bioenerg. Res</addtitle><description>Quantifying short-rotation coppice (SRC) willow leaf litter dynamics will improve our understanding of carbon (C) sequestration and nutrient cycling potentials within these biomass energy plantations and provide valuable data for model validation. The objective of this study was to quantify the decomposition rate constants (kBᵢₒₘₐₛₛ) and decomposition limit values (LVBᵢₒₘₐₛₛ), along with associated release rates (kNᵤₜᵣᵢₑₙₜ) and release limits (LVNᵤₜᵣᵢₑₙₜ) of nitrogen (N), phosphorus (P), potassium (K), sulphur (S), calcium (Ca), and magnesium (Mg) of leaf litter from several native and exotic willow varieties during an initial 4-year rotation at four sites within Saskatchewan, Canada. The kBᵢₒₘₐₛₛ, LVBᵢₒₘₐₛₛ, kNᵤₜᵣᵢₑₙₜ, and LVNᵤₜᵣᵢₑₙₜvalues varied among the willow varieties, sites, and nutrients, with average values of 1.7 year⁻¹, 79 %, 0.9 year⁻¹, and 83 %, respectively. Tissue N had the smallest kNᵤₜᵣᵢₑₙₜand LVNᵤₜᵣᵢₑₙₜvalues, whereas tissue K and Mg had the largest kNᵤₜᵣᵢₑₙₜand LVNᵤₜᵣᵢₑₙₜvalues, respectively. The leaf litter production varied among willow varieties and sites with an average biomass accumulation of 7.4 Mg ha⁻¹after the 4-year rotation and associated C sequestration rate of 0.2 Mg C ha⁻¹ year⁻¹. The average contribution of nutrients released from leaf litter decomposition during the 4-year rotation to the plant available soil nutrient pool across varieties and sites was 22, 4, 47, 10, 112, and 18 kg ha⁻¹of N, P, K, S, Ca, and Mg, respectively. Principal component analysis identified numerous key relationships between the measured soil, plant tissue, climate, and microclimate variables and observed willow leaf litter decomposition and nutrient-release characteristics. Our findings support the contention that SRC willow leaf litter is capable of enhancing both soil organic C levels and supplementing soil nutrient availability over time.</description><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>bioenergy</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>biomass production</subject><subject>Biomedical and Life Sciences</subject><subject>calcium</subject><subject>carbon</subject><subject>carbon sequestration</subject><subject>coppicing</subject><subject>Decomposition</subject><subject>Environmental conditions</subject><subject>Leaf litter</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Litter</subject><subject>Magnesium</subject><subject>Microclimate</subject><subject>model validation</subject><subject>nitrogen</subject><subject>Nutrient availability</subject><subject>Nutrient cycles</subject><subject>Nutrient dynamics</subject><subject>Nutrient release</subject><subject>Nutrients</subject><subject>phosphorus</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>plant litter</subject><subject>Plant Sciences</subject><subject>Plant tissues</subject><subject>Plantations</subject><subject>Plants</subject><subject>Potassium</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>Renewable resources</subject><subject>Reptiles &amp; amphibians</subject><subject>Soil (material)</subject><subject>Soil fertility</subject><subject>Soil nutrients</subject><subject>soil organic carbon</subject><subject>Soil sciences</subject><subject>Studies</subject><subject>Sulfur</subject><subject>Trees</subject><subject>Willow</subject><subject>Wood Science &amp; Technology</subject><issn>1939-1234</issn><issn>1939-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNksuKFDEUhgtRcBx9AFcG3LiwxtyrajmUV2hUbEeXIZ066c5YndQkaYd-Fx_WlCXeEJEsEg7f95OEv6ruE3xGMG6eJEKJEDUmvO44I_XxRnVCOtbVhHJ688eZ8dvVnZQuMZaY4-6k-rICbdHK5QwRPQUT9lNILrvgkfYDen3I0YHP9TsYQSdA_U5HbQrsUnYmoWDRGj5D1CP66MYxXKMPuhjZQSqDvHMerXchloCQ9bfYPkyTM4Dejtovo4RmSqdPOpsdXGv_GPXa60HfrW5ZPSa4930_rS6eP3vfv6xXb1686s9XtRGc5doCF91GDtLYAQ_USEwwNJIK2wAbcCdh09BmgxvNQLaMG846SRljLWVWkpadVo-W3CmGqwOkrPYuGRjLDSEckiJSEI4F_y-UCcxpK0lBH_6BXoZD9OUhhaItaWQrmp_UVo-gnLchlw-eQ9V5QyhlHRVz1tlfqLIG2DsTPFhX5r8JZBFMDClFsGqKbq_jURGs5saopTGqNEbNjVHH4tDFSYX1W4i_XPgf0oNFsjoovS29UBdrionAmHSkbTH7CvuozHQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Hangs, R. D</creator><creator>Schoenau, J. J</creator><creator>Van Rees, K. C. J</creator><creator>Bélanger, N</creator><creator>Volk, T</creator><general>Springer-Verlag</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7U6</scope><scope>7SU</scope></search><sort><creationdate>20141201</creationdate><title>Leaf Litter Decomposition and Nutrient-Release Characteristics of Several Willow Varieties Within Short-Rotation Coppice Plantations in Saskatchewan, Canada</title><author>Hangs, R. D ; Schoenau, J. J ; Van Rees, K. C. J ; Bélanger, N ; Volk, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-fe459b6d6cfd0d2c6010e7625f7e3d096eb727b07a3e6834c43962333823f6183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>bioenergy</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>biomass production</topic><topic>Biomedical and Life Sciences</topic><topic>calcium</topic><topic>carbon</topic><topic>carbon sequestration</topic><topic>coppicing</topic><topic>Decomposition</topic><topic>Environmental conditions</topic><topic>Leaf litter</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Litter</topic><topic>Magnesium</topic><topic>Microclimate</topic><topic>model validation</topic><topic>nitrogen</topic><topic>Nutrient availability</topic><topic>Nutrient cycles</topic><topic>Nutrient dynamics</topic><topic>Nutrient release</topic><topic>Nutrients</topic><topic>phosphorus</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>plant litter</topic><topic>Plant Sciences</topic><topic>Plant tissues</topic><topic>Plantations</topic><topic>Plants</topic><topic>Potassium</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>Renewable resources</topic><topic>Reptiles &amp; amphibians</topic><topic>Soil (material)</topic><topic>Soil fertility</topic><topic>Soil nutrients</topic><topic>soil organic carbon</topic><topic>Soil sciences</topic><topic>Studies</topic><topic>Sulfur</topic><topic>Trees</topic><topic>Willow</topic><topic>Wood Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hangs, R. D</creatorcontrib><creatorcontrib>Schoenau, J. J</creatorcontrib><creatorcontrib>Van Rees, K. C. J</creatorcontrib><creatorcontrib>Bélanger, N</creatorcontrib><creatorcontrib>Volk, T</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Bioenergy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hangs, R. D</au><au>Schoenau, J. J</au><au>Van Rees, K. C. J</au><au>Bélanger, N</au><au>Volk, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leaf Litter Decomposition and Nutrient-Release Characteristics of Several Willow Varieties Within Short-Rotation Coppice Plantations in Saskatchewan, Canada</atitle><jtitle>Bioenergy research</jtitle><stitle>Bioenerg. Res</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>7</volume><issue>4</issue><spage>1074</spage><epage>1090</epage><pages>1074-1090</pages><issn>1939-1234</issn><eissn>1939-1242</eissn><abstract>Quantifying short-rotation coppice (SRC) willow leaf litter dynamics will improve our understanding of carbon (C) sequestration and nutrient cycling potentials within these biomass energy plantations and provide valuable data for model validation. The objective of this study was to quantify the decomposition rate constants (kBᵢₒₘₐₛₛ) and decomposition limit values (LVBᵢₒₘₐₛₛ), along with associated release rates (kNᵤₜᵣᵢₑₙₜ) and release limits (LVNᵤₜᵣᵢₑₙₜ) of nitrogen (N), phosphorus (P), potassium (K), sulphur (S), calcium (Ca), and magnesium (Mg) of leaf litter from several native and exotic willow varieties during an initial 4-year rotation at four sites within Saskatchewan, Canada. The kBᵢₒₘₐₛₛ, LVBᵢₒₘₐₛₛ, kNᵤₜᵣᵢₑₙₜ, and LVNᵤₜᵣᵢₑₙₜvalues varied among the willow varieties, sites, and nutrients, with average values of 1.7 year⁻¹, 79 %, 0.9 year⁻¹, and 83 %, respectively. Tissue N had the smallest kNᵤₜᵣᵢₑₙₜand LVNᵤₜᵣᵢₑₙₜvalues, whereas tissue K and Mg had the largest kNᵤₜᵣᵢₑₙₜand LVNᵤₜᵣᵢₑₙₜvalues, respectively. The leaf litter production varied among willow varieties and sites with an average biomass accumulation of 7.4 Mg ha⁻¹after the 4-year rotation and associated C sequestration rate of 0.2 Mg C ha⁻¹ year⁻¹. The average contribution of nutrients released from leaf litter decomposition during the 4-year rotation to the plant available soil nutrient pool across varieties and sites was 22, 4, 47, 10, 112, and 18 kg ha⁻¹of N, P, K, S, Ca, and Mg, respectively. Principal component analysis identified numerous key relationships between the measured soil, plant tissue, climate, and microclimate variables and observed willow leaf litter decomposition and nutrient-release characteristics. Our findings support the contention that SRC willow leaf litter is capable of enhancing both soil organic C levels and supplementing soil nutrient availability over time.</abstract><cop>Boston</cop><pub>Springer-Verlag</pub><doi>10.1007/s12155-014-9431-y</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-1234
ispartof Bioenergy research, 2014-12, Vol.7 (4), p.1074-1090
issn 1939-1234
1939-1242
language eng
recordid cdi_proquest_miscellaneous_1651405418
source SpringerLink Journals
subjects Alternative energy sources
Analysis
bioenergy
Biomass
Biomass energy
biomass production
Biomedical and Life Sciences
calcium
carbon
carbon sequestration
coppicing
Decomposition
Environmental conditions
Leaf litter
Leaves
Life Sciences
Litter
Magnesium
Microclimate
model validation
nitrogen
Nutrient availability
Nutrient cycles
Nutrient dynamics
Nutrient release
Nutrients
phosphorus
Plant Breeding/Biotechnology
Plant Ecology
Plant Genetics and Genomics
plant litter
Plant Sciences
Plant tissues
Plantations
Plants
Potassium
principal component analysis
Principal components analysis
Renewable resources
Reptiles & amphibians
Soil (material)
Soil fertility
Soil nutrients
soil organic carbon
Soil sciences
Studies
Sulfur
Trees
Willow
Wood Science & Technology
title Leaf Litter Decomposition and Nutrient-Release Characteristics of Several Willow Varieties Within Short-Rotation Coppice Plantations in Saskatchewan, Canada
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leaf%20Litter%20Decomposition%20and%20Nutrient-Release%20Characteristics%20of%20Several%20Willow%20Varieties%20Within%20Short-Rotation%20Coppice%20Plantations%20in%20Saskatchewan,%20Canada&rft.jtitle=Bioenergy%20research&rft.au=Hangs,%20R.%20D&rft.date=2014-12-01&rft.volume=7&rft.issue=4&rft.spage=1074&rft.epage=1090&rft.pages=1074-1090&rft.issn=1939-1234&rft.eissn=1939-1242&rft_id=info:doi/10.1007/s12155-014-9431-y&rft_dat=%3Cgale_proqu%3EA712239251%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1628176857&rft_id=info:pmid/&rft_galeid=A712239251&rfr_iscdi=true