Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review
Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nu...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2014-04, Vol.45 (4), p.1694-1719 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1719 |
---|---|
container_issue | 4 |
container_start_page | 1694 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 45 |
creator | Gránásy, László Rátkai, László Szállás, Attila Korbuly, Bálint Tóth, Gyula I. Környei, László Pusztai, Tamás |
description | Advances in the orientation-field-based
phase-field
(PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed
growth front nucleation
. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films
via
external fields, confined geometry, particle additives, scratching/piercing the films,
etc.
are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly. |
doi_str_mv | 10.1007/s11661-013-1988-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651404695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651404695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-15ed9f9e38541f60347da26c5b09af346a48247964e2bbe69346b64c2c986443</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqVwAHaW2LAJeOKfxOyqigJS-RGwt9JkQl25cbFTUHccghNyElyFBUJiNTNP33savSQ5BnoGlObnAUBKSCmwFFRRpHQnGYDg24vT3bjTnKVCZmw_OQhhQSkFxeQgaR7mZcB0YtDW5NbVaE37QlxDHpzdVH4TutJGCcmTs6Y2janKzrj2gky8W5I7xNoiGfdcIJ0jT6s5-rU1HYavj88RecQ3g--HyV4TATz6mcPkeXL5PL5Op_dXN-PRNK24KLoUBNaqUcgKwaGRlPG8LjNZiRlVZcO4LHmR8VxJjtlshlJFaSZ5lVWqkJyzYXLax668e11j6PTShAqtLVt066BBCuCUSyUievIHXbi1b-NzGgRQlgsJeaSgpyrvQvDY6JU3y9JvNFC9LV73xetYvN4Wr2n0ZL0nRLZ9Qf8r-V_TN2XWhfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510375617</pqid></control><display><type>article</type><title>Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gránásy, László ; Rátkai, László ; Szállás, Attila ; Korbuly, Bálint ; Tóth, Gyula I. ; Környei, László ; Pusztai, Tamás</creator><creatorcontrib>Gránásy, László ; Rátkai, László ; Szállás, Attila ; Korbuly, Bálint ; Tóth, Gyula I. ; Környei, László ; Pusztai, Tamás</creatorcontrib><description>Advances in the orientation-field-based
phase-field
(PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed
growth front nucleation
. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films
via
external fields, confined geometry, particle additives, scratching/piercing the films,
etc.
are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-013-1988-0</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Crystals ; Dendritic structure ; Eutectics ; Grain growth ; Kinetics and Microstructure Control ; Materials Science ; Metallic Materials ; Metallurgy ; Nanotechnology ; Nucleation ; Polycrystals ; Scratching ; Simulation ; Solidification ; Structural Materials ; Surfaces and Interfaces ; Symposium: International Workshop on Materials Design Process: Thermodynamics ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-04, Vol.45 (4), p.1694-1719</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2013</rights><rights>The Minerals, Metals & Materials Society and ASM International 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-15ed9f9e38541f60347da26c5b09af346a48247964e2bbe69346b64c2c986443</citedby><cites>FETCH-LOGICAL-c458t-15ed9f9e38541f60347da26c5b09af346a48247964e2bbe69346b64c2c986443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-013-1988-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-013-1988-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gránásy, László</creatorcontrib><creatorcontrib>Rátkai, László</creatorcontrib><creatorcontrib>Szállás, Attila</creatorcontrib><creatorcontrib>Korbuly, Bálint</creatorcontrib><creatorcontrib>Tóth, Gyula I.</creatorcontrib><creatorcontrib>Környei, László</creatorcontrib><creatorcontrib>Pusztai, Tamás</creatorcontrib><title>Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Advances in the orientation-field-based
phase-field
(PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed
growth front nucleation
. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films
via
external fields, confined geometry, particle additives, scratching/piercing the films,
etc.
are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dendritic structure</subject><subject>Eutectics</subject><subject>Grain growth</subject><subject>Kinetics and Microstructure Control</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Polycrystals</subject><subject>Scratching</subject><subject>Simulation</subject><subject>Solidification</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Symposium: International Workshop on Materials Design Process: Thermodynamics</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1OwzAQhSMEEqVwAHaW2LAJeOKfxOyqigJS-RGwt9JkQl25cbFTUHccghNyElyFBUJiNTNP33savSQ5BnoGlObnAUBKSCmwFFRRpHQnGYDg24vT3bjTnKVCZmw_OQhhQSkFxeQgaR7mZcB0YtDW5NbVaE37QlxDHpzdVH4TutJGCcmTs6Y2janKzrj2gky8W5I7xNoiGfdcIJ0jT6s5-rU1HYavj88RecQ3g--HyV4TATz6mcPkeXL5PL5Op_dXN-PRNK24KLoUBNaqUcgKwaGRlPG8LjNZiRlVZcO4LHmR8VxJjtlshlJFaSZ5lVWqkJyzYXLax668e11j6PTShAqtLVt066BBCuCUSyUievIHXbi1b-NzGgRQlgsJeaSgpyrvQvDY6JU3y9JvNFC9LV73xetYvN4Wr2n0ZL0nRLZ9Qf8r-V_TN2XWhfA</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Gránásy, László</creator><creator>Rátkai, László</creator><creator>Szállás, Attila</creator><creator>Korbuly, Bálint</creator><creator>Tóth, Gyula I.</creator><creator>Környei, László</creator><creator>Pusztai, Tamás</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20140401</creationdate><title>Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review</title><author>Gránásy, László ; Rátkai, László ; Szállás, Attila ; Korbuly, Bálint ; Tóth, Gyula I. ; Környei, László ; Pusztai, Tamás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-15ed9f9e38541f60347da26c5b09af346a48247964e2bbe69346b64c2c986443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dendritic structure</topic><topic>Eutectics</topic><topic>Grain growth</topic><topic>Kinetics and Microstructure Control</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Polycrystals</topic><topic>Scratching</topic><topic>Simulation</topic><topic>Solidification</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Symposium: International Workshop on Materials Design Process: Thermodynamics</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gránásy, László</creatorcontrib><creatorcontrib>Rátkai, László</creatorcontrib><creatorcontrib>Szállás, Attila</creatorcontrib><creatorcontrib>Korbuly, Bálint</creatorcontrib><creatorcontrib>Tóth, Gyula I.</creatorcontrib><creatorcontrib>Környei, László</creatorcontrib><creatorcontrib>Pusztai, Tamás</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gránásy, László</au><au>Rátkai, László</au><au>Szállás, Attila</au><au>Korbuly, Bálint</au><au>Tóth, Gyula I.</au><au>Környei, László</au><au>Pusztai, Tamás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>45</volume><issue>4</issue><spage>1694</spage><epage>1719</epage><pages>1694-1719</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Advances in the orientation-field-based
phase-field
(PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed
growth front nucleation
. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films
via
external fields, confined geometry, particle additives, scratching/piercing the films,
etc.
are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-013-1988-0</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-04, Vol.45 (4), p.1694-1719 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651404695 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Crystal structure Crystals Dendritic structure Eutectics Grain growth Kinetics and Microstructure Control Materials Science Metallic Materials Metallurgy Nanotechnology Nucleation Polycrystals Scratching Simulation Solidification Structural Materials Surfaces and Interfaces Symposium: International Workshop on Materials Design Process: Thermodynamics Thin Films |
title | Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Field%20Modeling%20of%20Polycrystalline%20Solidification:%20From%20Needle%20Crystals%20to%20Spherulites%E2%80%94A%20Review&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Gr%C3%A1n%C3%A1sy,%20L%C3%A1szl%C3%B3&rft.date=2014-04-01&rft.volume=45&rft.issue=4&rft.spage=1694&rft.epage=1719&rft.pages=1694-1719&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-013-1988-0&rft_dat=%3Cproquest_cross%3E1651404695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510375617&rft_id=info:pmid/&rfr_iscdi=true |