Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review

Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2014-04, Vol.45 (4), p.1694-1719
Hauptverfasser: Gránásy, László, Rátkai, László, Szállás, Attila, Korbuly, Bálint, Tóth, Gyula I., Környei, László, Pusztai, Tamás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1719
container_issue 4
container_start_page 1694
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 45
creator Gránásy, László
Rátkai, László
Szállás, Attila
Korbuly, Bálint
Tóth, Gyula I.
Környei, László
Pusztai, Tamás
description Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation . Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.
doi_str_mv 10.1007/s11661-013-1988-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651404695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651404695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-15ed9f9e38541f60347da26c5b09af346a48247964e2bbe69346b64c2c986443</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqVwAHaW2LAJeOKfxOyqigJS-RGwt9JkQl25cbFTUHccghNyElyFBUJiNTNP33savSQ5BnoGlObnAUBKSCmwFFRRpHQnGYDg24vT3bjTnKVCZmw_OQhhQSkFxeQgaR7mZcB0YtDW5NbVaE37QlxDHpzdVH4TutJGCcmTs6Y2janKzrj2gky8W5I7xNoiGfdcIJ0jT6s5-rU1HYavj88RecQ3g--HyV4TATz6mcPkeXL5PL5Op_dXN-PRNK24KLoUBNaqUcgKwaGRlPG8LjNZiRlVZcO4LHmR8VxJjtlshlJFaSZ5lVWqkJyzYXLax668e11j6PTShAqtLVt066BBCuCUSyUievIHXbi1b-NzGgRQlgsJeaSgpyrvQvDY6JU3y9JvNFC9LV73xetYvN4Wr2n0ZL0nRLZ9Qf8r-V_TN2XWhfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510375617</pqid></control><display><type>article</type><title>Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gránásy, László ; Rátkai, László ; Szállás, Attila ; Korbuly, Bálint ; Tóth, Gyula I. ; Környei, László ; Pusztai, Tamás</creator><creatorcontrib>Gránásy, László ; Rátkai, László ; Szállás, Attila ; Korbuly, Bálint ; Tóth, Gyula I. ; Környei, László ; Pusztai, Tamás</creatorcontrib><description>Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation . Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-013-1988-0</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Crystals ; Dendritic structure ; Eutectics ; Grain growth ; Kinetics and Microstructure Control ; Materials Science ; Metallic Materials ; Metallurgy ; Nanotechnology ; Nucleation ; Polycrystals ; Scratching ; Simulation ; Solidification ; Structural Materials ; Surfaces and Interfaces ; Symposium: International Workshop on Materials Design Process: Thermodynamics ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-04, Vol.45 (4), p.1694-1719</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2013</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-15ed9f9e38541f60347da26c5b09af346a48247964e2bbe69346b64c2c986443</citedby><cites>FETCH-LOGICAL-c458t-15ed9f9e38541f60347da26c5b09af346a48247964e2bbe69346b64c2c986443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-013-1988-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-013-1988-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gránásy, László</creatorcontrib><creatorcontrib>Rátkai, László</creatorcontrib><creatorcontrib>Szállás, Attila</creatorcontrib><creatorcontrib>Korbuly, Bálint</creatorcontrib><creatorcontrib>Tóth, Gyula I.</creatorcontrib><creatorcontrib>Környei, László</creatorcontrib><creatorcontrib>Pusztai, Tamás</creatorcontrib><title>Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation . Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dendritic structure</subject><subject>Eutectics</subject><subject>Grain growth</subject><subject>Kinetics and Microstructure Control</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Polycrystals</subject><subject>Scratching</subject><subject>Simulation</subject><subject>Solidification</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Symposium: International Workshop on Materials Design Process: Thermodynamics</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1OwzAQhSMEEqVwAHaW2LAJeOKfxOyqigJS-RGwt9JkQl25cbFTUHccghNyElyFBUJiNTNP33savSQ5BnoGlObnAUBKSCmwFFRRpHQnGYDg24vT3bjTnKVCZmw_OQhhQSkFxeQgaR7mZcB0YtDW5NbVaE37QlxDHpzdVH4TutJGCcmTs6Y2janKzrj2gky8W5I7xNoiGfdcIJ0jT6s5-rU1HYavj88RecQ3g--HyV4TATz6mcPkeXL5PL5Op_dXN-PRNK24KLoUBNaqUcgKwaGRlPG8LjNZiRlVZcO4LHmR8VxJjtlshlJFaSZ5lVWqkJyzYXLax668e11j6PTShAqtLVt066BBCuCUSyUievIHXbi1b-NzGgRQlgsJeaSgpyrvQvDY6JU3y9JvNFC9LV73xetYvN4Wr2n0ZL0nRLZ9Qf8r-V_TN2XWhfA</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Gránásy, László</creator><creator>Rátkai, László</creator><creator>Szállás, Attila</creator><creator>Korbuly, Bálint</creator><creator>Tóth, Gyula I.</creator><creator>Környei, László</creator><creator>Pusztai, Tamás</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20140401</creationdate><title>Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review</title><author>Gránásy, László ; Rátkai, László ; Szállás, Attila ; Korbuly, Bálint ; Tóth, Gyula I. ; Környei, László ; Pusztai, Tamás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-15ed9f9e38541f60347da26c5b09af346a48247964e2bbe69346b64c2c986443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dendritic structure</topic><topic>Eutectics</topic><topic>Grain growth</topic><topic>Kinetics and Microstructure Control</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Polycrystals</topic><topic>Scratching</topic><topic>Simulation</topic><topic>Solidification</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Symposium: International Workshop on Materials Design Process: Thermodynamics</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gránásy, László</creatorcontrib><creatorcontrib>Rátkai, László</creatorcontrib><creatorcontrib>Szállás, Attila</creatorcontrib><creatorcontrib>Korbuly, Bálint</creatorcontrib><creatorcontrib>Tóth, Gyula I.</creatorcontrib><creatorcontrib>Környei, László</creatorcontrib><creatorcontrib>Pusztai, Tamás</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gránásy, László</au><au>Rátkai, László</au><au>Szállás, Attila</au><au>Korbuly, Bálint</au><au>Tóth, Gyula I.</au><au>Környei, László</au><au>Pusztai, Tamás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>45</volume><issue>4</issue><spage>1694</spage><epage>1719</epage><pages>1694-1719</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation . Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-013-1988-0</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-04, Vol.45 (4), p.1694-1719
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1651404695
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal structure
Crystals
Dendritic structure
Eutectics
Grain growth
Kinetics and Microstructure Control
Materials Science
Metallic Materials
Metallurgy
Nanotechnology
Nucleation
Polycrystals
Scratching
Simulation
Solidification
Structural Materials
Surfaces and Interfaces
Symposium: International Workshop on Materials Design Process: Thermodynamics
Thin Films
title Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Field%20Modeling%20of%20Polycrystalline%20Solidification:%20From%20Needle%20Crystals%20to%20Spherulites%E2%80%94A%20Review&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Gr%C3%A1n%C3%A1sy,%20L%C3%A1szl%C3%B3&rft.date=2014-04-01&rft.volume=45&rft.issue=4&rft.spage=1694&rft.epage=1719&rft.pages=1694-1719&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-013-1988-0&rft_dat=%3Cproquest_cross%3E1651404695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510375617&rft_id=info:pmid/&rfr_iscdi=true