Shrinkage Linear and Widely Linear Complex-Valued Least Mean Squares Algorithms for Adaptive Beamforming

In this paper, shrinkage linear complex-valued least mean squares (SL-CLMS) and shrinkage widely linear complex-valued least mean squares (SWL-CLMS) algorithms are devised for adaptive beamforming. By exploiting the relationship between the noise-free a posteriori and a priori error signals, the SL-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2015-01, Vol.63 (1), p.119-131
Hauptverfasser: Shi, Yun-Mei, Huang, Lei, Qian, Cheng, So, H. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 1
container_start_page 119
container_title IEEE transactions on signal processing
container_volume 63
creator Shi, Yun-Mei
Huang, Lei
Qian, Cheng
So, H. C.
description In this paper, shrinkage linear complex-valued least mean squares (SL-CLMS) and shrinkage widely linear complex-valued least mean squares (SWL-CLMS) algorithms are devised for adaptive beamforming. By exploiting the relationship between the noise-free a posteriori and a priori error signals, the SL-CLMS method is able to provide a variable step size to update the weight vector for the adaptive beamformer, significantly enhancing the convergence speed and decreasing the steady-state misadjustment. On the other hand, besides adopting a variable step size determined by minimizing the square of the augmented noise-free a posteriori errors, the SWL-CLMS approach exploits the noncircular properties of the signal of interest, which considerably improves the steady-state performance. Simulation results are presented to illustrate their superiority over the CLMS, complex-valued normalized LMS, variable step size, recursive least squares (RLS) algorithms and their corresponding widely linear-based schemes. Additionally, our proposed algorithms are more computationally efficient than the RLS solutions though they may have a slightly slower convergence rate.
doi_str_mv 10.1109/TSP.2014.2367452
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651398770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6963464</ieee_id><sourcerecordid>1651398770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-3f71a8ed52ba2b1d5cb2c7646bbb3822a925c9e34ad15cb7fccd6b1b2da33a983</originalsourceid><addsrcrecordid>eNpdkMtLw0AQh4MoWB93wcuCFy-p-8ome6zFF1QU6usWJtlJu5pH3U3E_veuVD14mmHm-w3DF0VHjI4Zo_rsYX4_5pTJMRcqlQnfikZMSxZTmart0NNExEmWvuxGe96_0kBKrUbRcr50tn2DBZKZbREcgdaQZ2uwXv9Opl2zqvEzfoJ6QENmCL4ntwgtmb8P4NCTSb3onO2XjSdV58jEwKq3H0jOEZowaGy7OIh2Kqg9Hv7U_ejx8uJheh3P7q5uppNZXApN-1hUKYMMTcIL4AUzSVnwMlVSFUUhMs5B86TUKCQYFnZpVZZGFazgBoQAnYn96HRzd-W69wF9nzfWl1jX0GI3-JyphAmdpSkN6Mk_9LUbXBu-C5SgLAvqkkDRDVW6znuHVb5ytgG3zhnNv9XnQX3-rT7_UR8ix5uIRcQ_XGklpJLiC5rqgFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1630184765</pqid></control><display><type>article</type><title>Shrinkage Linear and Widely Linear Complex-Valued Least Mean Squares Algorithms for Adaptive Beamforming</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Yun-Mei ; Huang, Lei ; Qian, Cheng ; So, H. C.</creator><creatorcontrib>Shi, Yun-Mei ; Huang, Lei ; Qian, Cheng ; So, H. C.</creatorcontrib><description>In this paper, shrinkage linear complex-valued least mean squares (SL-CLMS) and shrinkage widely linear complex-valued least mean squares (SWL-CLMS) algorithms are devised for adaptive beamforming. By exploiting the relationship between the noise-free a posteriori and a priori error signals, the SL-CLMS method is able to provide a variable step size to update the weight vector for the adaptive beamformer, significantly enhancing the convergence speed and decreasing the steady-state misadjustment. On the other hand, besides adopting a variable step size determined by minimizing the square of the augmented noise-free a posteriori errors, the SWL-CLMS approach exploits the noncircular properties of the signal of interest, which considerably improves the steady-state performance. Simulation results are presented to illustrate their superiority over the CLMS, complex-valued normalized LMS, variable step size, recursive least squares (RLS) algorithms and their corresponding widely linear-based schemes. Additionally, our proposed algorithms are more computationally efficient than the RLS solutions though they may have a slightly slower convergence rate.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2014.2367452</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Algorithm design and analysis ; Algorithms ; Approximation algorithms ; Beamforming ; Complex-valued least mean squares (CLMS) ; Convergence ; convergence speed ; Least mean squares ; Least mean squares algorithm ; Mathematical models ; Optimized production technology ; Shrinkage ; Signal processing algorithms ; Steady-state ; variable step size ; Vectors ; widely linear</subject><ispartof>IEEE transactions on signal processing, 2015-01, Vol.63 (1), p.119-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-3f71a8ed52ba2b1d5cb2c7646bbb3822a925c9e34ad15cb7fccd6b1b2da33a983</citedby><cites>FETCH-LOGICAL-c390t-3f71a8ed52ba2b1d5cb2c7646bbb3822a925c9e34ad15cb7fccd6b1b2da33a983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6963464$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6963464$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Yun-Mei</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Qian, Cheng</creatorcontrib><creatorcontrib>So, H. C.</creatorcontrib><title>Shrinkage Linear and Widely Linear Complex-Valued Least Mean Squares Algorithms for Adaptive Beamforming</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, shrinkage linear complex-valued least mean squares (SL-CLMS) and shrinkage widely linear complex-valued least mean squares (SWL-CLMS) algorithms are devised for adaptive beamforming. By exploiting the relationship between the noise-free a posteriori and a priori error signals, the SL-CLMS method is able to provide a variable step size to update the weight vector for the adaptive beamformer, significantly enhancing the convergence speed and decreasing the steady-state misadjustment. On the other hand, besides adopting a variable step size determined by minimizing the square of the augmented noise-free a posteriori errors, the SWL-CLMS approach exploits the noncircular properties of the signal of interest, which considerably improves the steady-state performance. Simulation results are presented to illustrate their superiority over the CLMS, complex-valued normalized LMS, variable step size, recursive least squares (RLS) algorithms and their corresponding widely linear-based schemes. Additionally, our proposed algorithms are more computationally efficient than the RLS solutions though they may have a slightly slower convergence rate.</description><subject>Adaptive algorithms</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Beamforming</subject><subject>Complex-valued least mean squares (CLMS)</subject><subject>Convergence</subject><subject>convergence speed</subject><subject>Least mean squares</subject><subject>Least mean squares algorithm</subject><subject>Mathematical models</subject><subject>Optimized production technology</subject><subject>Shrinkage</subject><subject>Signal processing algorithms</subject><subject>Steady-state</subject><subject>variable step size</subject><subject>Vectors</subject><subject>widely linear</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLw0AQh4MoWB93wcuCFy-p-8ome6zFF1QU6usWJtlJu5pH3U3E_veuVD14mmHm-w3DF0VHjI4Zo_rsYX4_5pTJMRcqlQnfikZMSxZTmart0NNExEmWvuxGe96_0kBKrUbRcr50tn2DBZKZbREcgdaQZ2uwXv9Opl2zqvEzfoJ6QENmCL4ntwgtmb8P4NCTSb3onO2XjSdV58jEwKq3H0jOEZowaGy7OIh2Kqg9Hv7U_ejx8uJheh3P7q5uppNZXApN-1hUKYMMTcIL4AUzSVnwMlVSFUUhMs5B86TUKCQYFnZpVZZGFazgBoQAnYn96HRzd-W69wF9nzfWl1jX0GI3-JyphAmdpSkN6Mk_9LUbXBu-C5SgLAvqkkDRDVW6znuHVb5ytgG3zhnNv9XnQX3-rT7_UR8ix5uIRcQ_XGklpJLiC5rqgFA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Shi, Yun-Mei</creator><creator>Huang, Lei</creator><creator>Qian, Cheng</creator><creator>So, H. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150101</creationdate><title>Shrinkage Linear and Widely Linear Complex-Valued Least Mean Squares Algorithms for Adaptive Beamforming</title><author>Shi, Yun-Mei ; Huang, Lei ; Qian, Cheng ; So, H. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-3f71a8ed52ba2b1d5cb2c7646bbb3822a925c9e34ad15cb7fccd6b1b2da33a983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive algorithms</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Beamforming</topic><topic>Complex-valued least mean squares (CLMS)</topic><topic>Convergence</topic><topic>convergence speed</topic><topic>Least mean squares</topic><topic>Least mean squares algorithm</topic><topic>Mathematical models</topic><topic>Optimized production technology</topic><topic>Shrinkage</topic><topic>Signal processing algorithms</topic><topic>Steady-state</topic><topic>variable step size</topic><topic>Vectors</topic><topic>widely linear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yun-Mei</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Qian, Cheng</creatorcontrib><creatorcontrib>So, H. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Yun-Mei</au><au>Huang, Lei</au><au>Qian, Cheng</au><au>So, H. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shrinkage Linear and Widely Linear Complex-Valued Least Mean Squares Algorithms for Adaptive Beamforming</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>63</volume><issue>1</issue><spage>119</spage><epage>131</epage><pages>119-131</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, shrinkage linear complex-valued least mean squares (SL-CLMS) and shrinkage widely linear complex-valued least mean squares (SWL-CLMS) algorithms are devised for adaptive beamforming. By exploiting the relationship between the noise-free a posteriori and a priori error signals, the SL-CLMS method is able to provide a variable step size to update the weight vector for the adaptive beamformer, significantly enhancing the convergence speed and decreasing the steady-state misadjustment. On the other hand, besides adopting a variable step size determined by minimizing the square of the augmented noise-free a posteriori errors, the SWL-CLMS approach exploits the noncircular properties of the signal of interest, which considerably improves the steady-state performance. Simulation results are presented to illustrate their superiority over the CLMS, complex-valued normalized LMS, variable step size, recursive least squares (RLS) algorithms and their corresponding widely linear-based schemes. Additionally, our proposed algorithms are more computationally efficient than the RLS solutions though they may have a slightly slower convergence rate.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2014.2367452</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2015-01, Vol.63 (1), p.119-131
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_1651398770
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Algorithm design and analysis
Algorithms
Approximation algorithms
Beamforming
Complex-valued least mean squares (CLMS)
Convergence
convergence speed
Least mean squares
Least mean squares algorithm
Mathematical models
Optimized production technology
Shrinkage
Signal processing algorithms
Steady-state
variable step size
Vectors
widely linear
title Shrinkage Linear and Widely Linear Complex-Valued Least Mean Squares Algorithms for Adaptive Beamforming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shrinkage%20Linear%20and%20Widely%20Linear%20Complex-Valued%20Least%20Mean%20Squares%20Algorithms%20for%20Adaptive%20Beamforming&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Shi,%20Yun-Mei&rft.date=2015-01-01&rft.volume=63&rft.issue=1&rft.spage=119&rft.epage=131&rft.pages=119-131&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2014.2367452&rft_dat=%3Cproquest_RIE%3E1651398770%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1630184765&rft_id=info:pmid/&rft_ieee_id=6963464&rfr_iscdi=true