Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks
This paper presents a subtractive clustering-based distributed Gaussian mixture model (GMM) in sensor networks. In literature, the Expectation-Maximization (EM) algorithm is frequently used to estimate a mixture's parameters. An inaccurate estimation would deteriorate the extracted data from th...
Gespeichert in:
Veröffentlicht in: | International journal of advancements in computing technology 2013-08, Vol.5 (12), p.414-414 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 12 |
container_start_page | 414 |
container_title | International journal of advancements in computing technology |
container_volume | 5 |
creator | Ko, JinSeok Mohaisen, Manar Rheem, JaeYeol |
description | This paper presents a subtractive clustering-based distributed Gaussian mixture model (GMM) in sensor networks. In literature, the Expectation-Maximization (EM) algorithm is frequently used to estimate a mixture's parameters. An inaccurate estimation would deteriorate the extracted data from the obtained model. Once we estimate the optimal number of components, two problems would have been solved: estimation of the optimal number of clusters and estimation of the initial values of the model parameters. In this paper, we propose a distributed data mining algorithm for sensor networks. The proposed distributed GMM is based on the subtractive clustering algorithm which is noise robust method. To estimate the optimal number of clusters, our proposed algorithm uses the mutual relationship between the mixture components. Experimental results show the effectiveness of the proposed method which estimates both the optimal number of clusters and initial mean vectors. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651394387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651394387</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16513943873</originalsourceid><addsrcrecordid>eNqVjL1uwjAURi1UpKI273DHLpEc3DRk5qcssNAdOeQG3dbY4Hvd0rfHQ4eufMs5w9E3UpPp1JiyNaZ5yK51Xc60aR9Vwfyp89pGV1U9Uddd6iTag9A3wtwlFozkj9BZxh4WxBKpS5L93SZmsh42dJUUETahRwdDiLBAzyS_sGShkxUKHqzv_9-Rh12OcrtF-Qnxi5_VeLCOsfjjk3pZLT_m6_IcwyUhy_5EfEDnrMeQeF-91ZVpX82sMXekNykcVJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651394387</pqid></control><display><type>article</type><title>Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ko, JinSeok ; Mohaisen, Manar ; Rheem, JaeYeol</creator><creatorcontrib>Ko, JinSeok ; Mohaisen, Manar ; Rheem, JaeYeol</creatorcontrib><description>This paper presents a subtractive clustering-based distributed Gaussian mixture model (GMM) in sensor networks. In literature, the Expectation-Maximization (EM) algorithm is frequently used to estimate a mixture's parameters. An inaccurate estimation would deteriorate the extracted data from the obtained model. Once we estimate the optimal number of components, two problems would have been solved: estimation of the optimal number of clusters and estimation of the initial values of the model parameters. In this paper, we propose a distributed data mining algorithm for sensor networks. The proposed distributed GMM is based on the subtractive clustering algorithm which is noise robust method. To estimate the optimal number of clusters, our proposed algorithm uses the mutual relationship between the mixture components. Experimental results show the effectiveness of the proposed method which estimates both the optimal number of clusters and initial mean vectors.</description><identifier>ISSN: 2005-8039</identifier><identifier>EISSN: 2233-9337</identifier><language>eng</language><subject>Algorithms ; Clustering ; Clusters ; Estimates ; Gaussian ; Networks ; Optimization ; Sensors</subject><ispartof>International journal of advancements in computing technology, 2013-08, Vol.5 (12), p.414-414</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Ko, JinSeok</creatorcontrib><creatorcontrib>Mohaisen, Manar</creatorcontrib><creatorcontrib>Rheem, JaeYeol</creatorcontrib><title>Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks</title><title>International journal of advancements in computing technology</title><description>This paper presents a subtractive clustering-based distributed Gaussian mixture model (GMM) in sensor networks. In literature, the Expectation-Maximization (EM) algorithm is frequently used to estimate a mixture's parameters. An inaccurate estimation would deteriorate the extracted data from the obtained model. Once we estimate the optimal number of components, two problems would have been solved: estimation of the optimal number of clusters and estimation of the initial values of the model parameters. In this paper, we propose a distributed data mining algorithm for sensor networks. The proposed distributed GMM is based on the subtractive clustering algorithm which is noise robust method. To estimate the optimal number of clusters, our proposed algorithm uses the mutual relationship between the mixture components. Experimental results show the effectiveness of the proposed method which estimates both the optimal number of clusters and initial mean vectors.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Estimates</subject><subject>Gaussian</subject><subject>Networks</subject><subject>Optimization</subject><subject>Sensors</subject><issn>2005-8039</issn><issn>2233-9337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjL1uwjAURi1UpKI273DHLpEc3DRk5qcssNAdOeQG3dbY4Hvd0rfHQ4eufMs5w9E3UpPp1JiyNaZ5yK51Xc60aR9Vwfyp89pGV1U9Uddd6iTag9A3wtwlFozkj9BZxh4WxBKpS5L93SZmsh42dJUUETahRwdDiLBAzyS_sGShkxUKHqzv_9-Rh12OcrtF-Qnxi5_VeLCOsfjjk3pZLT_m6_IcwyUhy_5EfEDnrMeQeF-91ZVpX82sMXekNykcVJM</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Ko, JinSeok</creator><creator>Mohaisen, Manar</creator><creator>Rheem, JaeYeol</creator><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130801</creationdate><title>Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks</title><author>Ko, JinSeok ; Mohaisen, Manar ; Rheem, JaeYeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16513943873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Estimates</topic><topic>Gaussian</topic><topic>Networks</topic><topic>Optimization</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, JinSeok</creatorcontrib><creatorcontrib>Mohaisen, Manar</creatorcontrib><creatorcontrib>Rheem, JaeYeol</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of advancements in computing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, JinSeok</au><au>Mohaisen, Manar</au><au>Rheem, JaeYeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks</atitle><jtitle>International journal of advancements in computing technology</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>5</volume><issue>12</issue><spage>414</spage><epage>414</epage><pages>414-414</pages><issn>2005-8039</issn><eissn>2233-9337</eissn><abstract>This paper presents a subtractive clustering-based distributed Gaussian mixture model (GMM) in sensor networks. In literature, the Expectation-Maximization (EM) algorithm is frequently used to estimate a mixture's parameters. An inaccurate estimation would deteriorate the extracted data from the obtained model. Once we estimate the optimal number of components, two problems would have been solved: estimation of the optimal number of clusters and estimation of the initial values of the model parameters. In this paper, we propose a distributed data mining algorithm for sensor networks. The proposed distributed GMM is based on the subtractive clustering algorithm which is noise robust method. To estimate the optimal number of clusters, our proposed algorithm uses the mutual relationship between the mixture components. Experimental results show the effectiveness of the proposed method which estimates both the optimal number of clusters and initial mean vectors.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2005-8039 |
ispartof | International journal of advancements in computing technology, 2013-08, Vol.5 (12), p.414-414 |
issn | 2005-8039 2233-9337 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651394387 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Clustering Clusters Estimates Gaussian Networks Optimization Sensors |
title | Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subtractive%20Clustering%20based%20Distributed%20Gaussian%20Mixture%20Model%20for%20Density%20Estimation%20and%20Clustering%20in%20Sensor%20Networks&rft.jtitle=International%20journal%20of%20advancements%20in%20computing%20technology&rft.au=Ko,%20JinSeok&rft.date=2013-08-01&rft.volume=5&rft.issue=12&rft.spage=414&rft.epage=414&rft.pages=414-414&rft.issn=2005-8039&rft.eissn=2233-9337&rft_id=info:doi/&rft_dat=%3Cproquest%3E1651394387%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651394387&rft_id=info:pmid/&rfr_iscdi=true |