Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks

This paper presents a subtractive clustering-based distributed Gaussian mixture model (GMM) in sensor networks. In literature, the Expectation-Maximization (EM) algorithm is frequently used to estimate a mixture's parameters. An inaccurate estimation would deteriorate the extracted data from th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advancements in computing technology 2013-08, Vol.5 (12), p.414-414
Hauptverfasser: Ko, JinSeok, Mohaisen, Manar, Rheem, JaeYeol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 12
container_start_page 414
container_title International journal of advancements in computing technology
container_volume 5
creator Ko, JinSeok
Mohaisen, Manar
Rheem, JaeYeol
description This paper presents a subtractive clustering-based distributed Gaussian mixture model (GMM) in sensor networks. In literature, the Expectation-Maximization (EM) algorithm is frequently used to estimate a mixture's parameters. An inaccurate estimation would deteriorate the extracted data from the obtained model. Once we estimate the optimal number of components, two problems would have been solved: estimation of the optimal number of clusters and estimation of the initial values of the model parameters. In this paper, we propose a distributed data mining algorithm for sensor networks. The proposed distributed GMM is based on the subtractive clustering algorithm which is noise robust method. To estimate the optimal number of clusters, our proposed algorithm uses the mutual relationship between the mixture components. Experimental results show the effectiveness of the proposed method which estimates both the optimal number of clusters and initial mean vectors.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651394387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651394387</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16513943873</originalsourceid><addsrcrecordid>eNqVjL1uwjAURi1UpKI273DHLpEc3DRk5qcssNAdOeQG3dbY4Hvd0rfHQ4eufMs5w9E3UpPp1JiyNaZ5yK51Xc60aR9Vwfyp89pGV1U9Uddd6iTag9A3wtwlFozkj9BZxh4WxBKpS5L93SZmsh42dJUUETahRwdDiLBAzyS_sGShkxUKHqzv_9-Rh12OcrtF-Qnxi5_VeLCOsfjjk3pZLT_m6_IcwyUhy_5EfEDnrMeQeF-91ZVpX82sMXekNykcVJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651394387</pqid></control><display><type>article</type><title>Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ko, JinSeok ; Mohaisen, Manar ; Rheem, JaeYeol</creator><creatorcontrib>Ko, JinSeok ; Mohaisen, Manar ; Rheem, JaeYeol</creatorcontrib><description>This paper presents a subtractive clustering-based distributed Gaussian mixture model (GMM) in sensor networks. In literature, the Expectation-Maximization (EM) algorithm is frequently used to estimate a mixture's parameters. An inaccurate estimation would deteriorate the extracted data from the obtained model. Once we estimate the optimal number of components, two problems would have been solved: estimation of the optimal number of clusters and estimation of the initial values of the model parameters. In this paper, we propose a distributed data mining algorithm for sensor networks. The proposed distributed GMM is based on the subtractive clustering algorithm which is noise robust method. To estimate the optimal number of clusters, our proposed algorithm uses the mutual relationship between the mixture components. Experimental results show the effectiveness of the proposed method which estimates both the optimal number of clusters and initial mean vectors.</description><identifier>ISSN: 2005-8039</identifier><identifier>EISSN: 2233-9337</identifier><language>eng</language><subject>Algorithms ; Clustering ; Clusters ; Estimates ; Gaussian ; Networks ; Optimization ; Sensors</subject><ispartof>International journal of advancements in computing technology, 2013-08, Vol.5 (12), p.414-414</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Ko, JinSeok</creatorcontrib><creatorcontrib>Mohaisen, Manar</creatorcontrib><creatorcontrib>Rheem, JaeYeol</creatorcontrib><title>Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks</title><title>International journal of advancements in computing technology</title><description>This paper presents a subtractive clustering-based distributed Gaussian mixture model (GMM) in sensor networks. In literature, the Expectation-Maximization (EM) algorithm is frequently used to estimate a mixture's parameters. An inaccurate estimation would deteriorate the extracted data from the obtained model. Once we estimate the optimal number of components, two problems would have been solved: estimation of the optimal number of clusters and estimation of the initial values of the model parameters. In this paper, we propose a distributed data mining algorithm for sensor networks. The proposed distributed GMM is based on the subtractive clustering algorithm which is noise robust method. To estimate the optimal number of clusters, our proposed algorithm uses the mutual relationship between the mixture components. Experimental results show the effectiveness of the proposed method which estimates both the optimal number of clusters and initial mean vectors.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Estimates</subject><subject>Gaussian</subject><subject>Networks</subject><subject>Optimization</subject><subject>Sensors</subject><issn>2005-8039</issn><issn>2233-9337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjL1uwjAURi1UpKI273DHLpEc3DRk5qcssNAdOeQG3dbY4Hvd0rfHQ4eufMs5w9E3UpPp1JiyNaZ5yK51Xc60aR9Vwfyp89pGV1U9Uddd6iTag9A3wtwlFozkj9BZxh4WxBKpS5L93SZmsh42dJUUETahRwdDiLBAzyS_sGShkxUKHqzv_9-Rh12OcrtF-Qnxi5_VeLCOsfjjk3pZLT_m6_IcwyUhy_5EfEDnrMeQeF-91ZVpX82sMXekNykcVJM</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Ko, JinSeok</creator><creator>Mohaisen, Manar</creator><creator>Rheem, JaeYeol</creator><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130801</creationdate><title>Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks</title><author>Ko, JinSeok ; Mohaisen, Manar ; Rheem, JaeYeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16513943873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Estimates</topic><topic>Gaussian</topic><topic>Networks</topic><topic>Optimization</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, JinSeok</creatorcontrib><creatorcontrib>Mohaisen, Manar</creatorcontrib><creatorcontrib>Rheem, JaeYeol</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of advancements in computing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, JinSeok</au><au>Mohaisen, Manar</au><au>Rheem, JaeYeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks</atitle><jtitle>International journal of advancements in computing technology</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>5</volume><issue>12</issue><spage>414</spage><epage>414</epage><pages>414-414</pages><issn>2005-8039</issn><eissn>2233-9337</eissn><abstract>This paper presents a subtractive clustering-based distributed Gaussian mixture model (GMM) in sensor networks. In literature, the Expectation-Maximization (EM) algorithm is frequently used to estimate a mixture's parameters. An inaccurate estimation would deteriorate the extracted data from the obtained model. Once we estimate the optimal number of components, two problems would have been solved: estimation of the optimal number of clusters and estimation of the initial values of the model parameters. In this paper, we propose a distributed data mining algorithm for sensor networks. The proposed distributed GMM is based on the subtractive clustering algorithm which is noise robust method. To estimate the optimal number of clusters, our proposed algorithm uses the mutual relationship between the mixture components. Experimental results show the effectiveness of the proposed method which estimates both the optimal number of clusters and initial mean vectors.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 2005-8039
ispartof International journal of advancements in computing technology, 2013-08, Vol.5 (12), p.414-414
issn 2005-8039
2233-9337
language eng
recordid cdi_proquest_miscellaneous_1651394387
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Clustering
Clusters
Estimates
Gaussian
Networks
Optimization
Sensors
title Subtractive Clustering based Distributed Gaussian Mixture Model for Density Estimation and Clustering in Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subtractive%20Clustering%20based%20Distributed%20Gaussian%20Mixture%20Model%20for%20Density%20Estimation%20and%20Clustering%20in%20Sensor%20Networks&rft.jtitle=International%20journal%20of%20advancements%20in%20computing%20technology&rft.au=Ko,%20JinSeok&rft.date=2013-08-01&rft.volume=5&rft.issue=12&rft.spage=414&rft.epage=414&rft.pages=414-414&rft.issn=2005-8039&rft.eissn=2233-9337&rft_id=info:doi/&rft_dat=%3Cproquest%3E1651394387%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651394387&rft_id=info:pmid/&rfr_iscdi=true