Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates
In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydroge...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2014-05, Vol.45 (5), p.2412-2420 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2420 |
---|---|
container_issue | 5 |
container_start_page | 2412 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 45 |
creator | Wallaert, Elien Depover, Tom Arafin, Muhammad Verbeken, Kim |
description | In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydrogen traps. The steels were hydrogen charged both electrochemically and/or from the gaseous hydrogen source, followed by multiple thermal desorption spectroscopy (TDS) measurements. Electrochemical charging gave rise to a low-temperature peak [323 K to 523 K (50 °C to 250 °C)], originating from the hydrogen trapped near grain boundaries, with activation energy ranging between 24 and 33 kJ/mol, and at small NbC (39 to 48 kJ/mol) or NbN precipitates (23 to 24 kJ/mol). Gaseous charging caused a high-temperature TDS peak [723 K to 923 K (450 °C to 650 °C)], which was attributed to the presence of incoherent precipitates. The activation energy for NbC precipitates, charged in a hydrogen atmosphere, ranged between 63 and 68 kJ/mol and between 100 and 143 kJ/mol for NbN precipitates. |
doi_str_mv | 10.1007/s11661-013-2181-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651392428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651392428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-a02937587eb4f90bf21b8b9a1a380431e9be9b9b54e646070589b3760fb606e53</originalsourceid><addsrcrecordid>eNp1kFFrFDEQxxexYG39AL4tiOBLdGaTzW4e5axWKG3B8zlM0tm7LXubmOwJ9-3NeUVEEAITkt_8Z_hV1WuE9wjQfciIWqMAlKLBHgU-q86xVVKgUfC83KGTotWNfFG9zPkRANBIfV5t11tOO5rqT5xDissY5vpbZL-kkH2Ih_rqJ017-v0ehnrZcn19eEhhw7NYJ4pxnDf1iiL5cTkciVu3qml-KPW2vk_sxzgutHC-rM4GmjK_eqoX1ffPV-vVtbi5-_J19fFGeKXaRRA0RnZt37FTgwE3NOh6ZwhJ9qAksnHlGNcq1kpDB21vnOw0DE6D5lZeVO9OuTGFH3vOi92N2fM00cxhny3qFqVpVNMX9M0_6GPYp7lsZ7FAsnhtjoF4onxRkhMPNqZxR-lgEezRvT25t8W9Pbq3WHrePiVT9jQNiWY_5j-NZbYxRuvCNScul695w-mvDf4b_gv7npJ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513300725</pqid></control><display><type>article</type><title>Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates</title><source>Springer Nature - Complete Springer Journals</source><creator>Wallaert, Elien ; Depover, Tom ; Arafin, Muhammad ; Verbeken, Kim</creator><creatorcontrib>Wallaert, Elien ; Depover, Tom ; Arafin, Muhammad ; Verbeken, Kim</creatorcontrib><description>In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydrogen traps. The steels were hydrogen charged both electrochemically and/or from the gaseous hydrogen source, followed by multiple thermal desorption spectroscopy (TDS) measurements. Electrochemical charging gave rise to a low-temperature peak [323 K to 523 K (50 °C to 250 °C)], originating from the hydrogen trapped near grain boundaries, with activation energy ranging between 24 and 33 kJ/mol, and at small NbC (39 to 48 kJ/mol) or NbN precipitates (23 to 24 kJ/mol). Gaseous charging caused a high-temperature TDS peak [723 K to 923 K (450 °C to 650 °C)], which was attributed to the presence of incoherent precipitates. The activation energy for NbC precipitates, charged in a hydrogen atmosphere, ranged between 63 and 68 kJ/mol and between 100 and 143 kJ/mol for NbN precipitates.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-013-2181-1</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Activation energy ; Applied sciences ; Characterization and Evaluation of Materials ; Charging ; Chemical precipitation ; Chemistry and Materials Science ; Desorption ; Exact sciences and technology ; Ferritic stainless steel ; Grain boundaries ; Heat treating ; Hydrogen ; Hydrogen storage ; Materials Science ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Precipitates ; Precipitation ; Spectrum analysis ; Steels ; Structural Materials ; Surfaces and Interfaces ; Thermal desorption spectroscopy ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-05, Vol.45 (5), p.2412-2420</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-a02937587eb4f90bf21b8b9a1a380431e9be9b9b54e646070589b3760fb606e53</citedby><cites>FETCH-LOGICAL-c445t-a02937587eb4f90bf21b8b9a1a380431e9be9b9b54e646070589b3760fb606e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-013-2181-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-013-2181-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28399966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallaert, Elien</creatorcontrib><creatorcontrib>Depover, Tom</creatorcontrib><creatorcontrib>Arafin, Muhammad</creatorcontrib><creatorcontrib>Verbeken, Kim</creatorcontrib><title>Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydrogen traps. The steels were hydrogen charged both electrochemically and/or from the gaseous hydrogen source, followed by multiple thermal desorption spectroscopy (TDS) measurements. Electrochemical charging gave rise to a low-temperature peak [323 K to 523 K (50 °C to 250 °C)], originating from the hydrogen trapped near grain boundaries, with activation energy ranging between 24 and 33 kJ/mol, and at small NbC (39 to 48 kJ/mol) or NbN precipitates (23 to 24 kJ/mol). Gaseous charging caused a high-temperature TDS peak [723 K to 923 K (450 °C to 650 °C)], which was attributed to the presence of incoherent precipitates. The activation energy for NbC precipitates, charged in a hydrogen atmosphere, ranged between 63 and 68 kJ/mol and between 100 and 143 kJ/mol for NbN precipitates.</description><subject>Activation energy</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charging</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Desorption</subject><subject>Exact sciences and technology</subject><subject>Ferritic stainless steel</subject><subject>Grain boundaries</subject><subject>Heat treating</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Spectrum analysis</subject><subject>Steels</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermal desorption spectroscopy</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kFFrFDEQxxexYG39AL4tiOBLdGaTzW4e5axWKG3B8zlM0tm7LXubmOwJ9-3NeUVEEAITkt_8Z_hV1WuE9wjQfciIWqMAlKLBHgU-q86xVVKgUfC83KGTotWNfFG9zPkRANBIfV5t11tOO5rqT5xDissY5vpbZL-kkH2Ih_rqJ017-v0ehnrZcn19eEhhw7NYJ4pxnDf1iiL5cTkciVu3qml-KPW2vk_sxzgutHC-rM4GmjK_eqoX1ffPV-vVtbi5-_J19fFGeKXaRRA0RnZt37FTgwE3NOh6ZwhJ9qAksnHlGNcq1kpDB21vnOw0DE6D5lZeVO9OuTGFH3vOi92N2fM00cxhny3qFqVpVNMX9M0_6GPYp7lsZ7FAsnhtjoF4onxRkhMPNqZxR-lgEezRvT25t8W9Pbq3WHrePiVT9jQNiWY_5j-NZbYxRuvCNScul695w-mvDf4b_gv7npJ7</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Wallaert, Elien</creator><creator>Depover, Tom</creator><creator>Arafin, Muhammad</creator><creator>Verbeken, Kim</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20140501</creationdate><title>Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates</title><author>Wallaert, Elien ; Depover, Tom ; Arafin, Muhammad ; Verbeken, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-a02937587eb4f90bf21b8b9a1a380431e9be9b9b54e646070589b3760fb606e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation energy</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charging</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Desorption</topic><topic>Exact sciences and technology</topic><topic>Ferritic stainless steel</topic><topic>Grain boundaries</topic><topic>Heat treating</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Spectrum analysis</topic><topic>Steels</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermal desorption spectroscopy</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallaert, Elien</creatorcontrib><creatorcontrib>Depover, Tom</creatorcontrib><creatorcontrib>Arafin, Muhammad</creatorcontrib><creatorcontrib>Verbeken, Kim</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallaert, Elien</au><au>Depover, Tom</au><au>Arafin, Muhammad</au><au>Verbeken, Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>45</volume><issue>5</issue><spage>2412</spage><epage>2420</epage><pages>2412-2420</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydrogen traps. The steels were hydrogen charged both electrochemically and/or from the gaseous hydrogen source, followed by multiple thermal desorption spectroscopy (TDS) measurements. Electrochemical charging gave rise to a low-temperature peak [323 K to 523 K (50 °C to 250 °C)], originating from the hydrogen trapped near grain boundaries, with activation energy ranging between 24 and 33 kJ/mol, and at small NbC (39 to 48 kJ/mol) or NbN precipitates (23 to 24 kJ/mol). Gaseous charging caused a high-temperature TDS peak [723 K to 923 K (450 °C to 650 °C)], which was attributed to the presence of incoherent precipitates. The activation energy for NbC precipitates, charged in a hydrogen atmosphere, ranged between 63 and 68 kJ/mol and between 100 and 143 kJ/mol for NbN precipitates.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-013-2181-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-05, Vol.45 (5), p.2412-2420 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651392428 |
source | Springer Nature - Complete Springer Journals |
subjects | Activation energy Applied sciences Characterization and Evaluation of Materials Charging Chemical precipitation Chemistry and Materials Science Desorption Exact sciences and technology Ferritic stainless steel Grain boundaries Heat treating Hydrogen Hydrogen storage Materials Science Metallic Materials Metals. Metallurgy Nanotechnology Precipitates Precipitation Spectrum analysis Steels Structural Materials Surfaces and Interfaces Thermal desorption spectroscopy Thin Films |
title | Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Desorption%20Spectroscopy%20Evaluation%20of%20the%20Hydrogen-Trapping%20Capacity%20of%20NbC%20and%20NbN%20Precipitates&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Wallaert,%20Elien&rft.date=2014-05-01&rft.volume=45&rft.issue=5&rft.spage=2412&rft.epage=2420&rft.pages=2412-2420&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-013-2181-1&rft_dat=%3Cproquest_cross%3E1651392428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513300725&rft_id=info:pmid/&rfr_iscdi=true |