Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates

In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydroge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2014-05, Vol.45 (5), p.2412-2420
Hauptverfasser: Wallaert, Elien, Depover, Tom, Arafin, Muhammad, Verbeken, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2420
container_issue 5
container_start_page 2412
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 45
creator Wallaert, Elien
Depover, Tom
Arafin, Muhammad
Verbeken, Kim
description In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydrogen traps. The steels were hydrogen charged both electrochemically and/or from the gaseous hydrogen source, followed by multiple thermal desorption spectroscopy (TDS) measurements. Electrochemical charging gave rise to a low-temperature peak [323 K to 523 K (50 °C to 250 °C)], originating from the hydrogen trapped near grain boundaries, with activation energy ranging between 24 and 33 kJ/mol, and at small NbC (39 to 48 kJ/mol) or NbN precipitates (23 to 24 kJ/mol). Gaseous charging caused a high-temperature TDS peak [723 K to 923 K (450 °C to 650 °C)], which was attributed to the presence of incoherent precipitates. The activation energy for NbC precipitates, charged in a hydrogen atmosphere, ranged between 63 and 68 kJ/mol and between 100 and 143 kJ/mol for NbN precipitates.
doi_str_mv 10.1007/s11661-013-2181-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651392428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651392428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-a02937587eb4f90bf21b8b9a1a380431e9be9b9b54e646070589b3760fb606e53</originalsourceid><addsrcrecordid>eNp1kFFrFDEQxxexYG39AL4tiOBLdGaTzW4e5axWKG3B8zlM0tm7LXubmOwJ9-3NeUVEEAITkt_8Z_hV1WuE9wjQfciIWqMAlKLBHgU-q86xVVKgUfC83KGTotWNfFG9zPkRANBIfV5t11tOO5rqT5xDissY5vpbZL-kkH2Ih_rqJ017-v0ehnrZcn19eEhhw7NYJ4pxnDf1iiL5cTkciVu3qml-KPW2vk_sxzgutHC-rM4GmjK_eqoX1ffPV-vVtbi5-_J19fFGeKXaRRA0RnZt37FTgwE3NOh6ZwhJ9qAksnHlGNcq1kpDB21vnOw0DE6D5lZeVO9OuTGFH3vOi92N2fM00cxhny3qFqVpVNMX9M0_6GPYp7lsZ7FAsnhtjoF4onxRkhMPNqZxR-lgEezRvT25t8W9Pbq3WHrePiVT9jQNiWY_5j-NZbYxRuvCNScul695w-mvDf4b_gv7npJ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513300725</pqid></control><display><type>article</type><title>Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates</title><source>Springer Nature - Complete Springer Journals</source><creator>Wallaert, Elien ; Depover, Tom ; Arafin, Muhammad ; Verbeken, Kim</creator><creatorcontrib>Wallaert, Elien ; Depover, Tom ; Arafin, Muhammad ; Verbeken, Kim</creatorcontrib><description>In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydrogen traps. The steels were hydrogen charged both electrochemically and/or from the gaseous hydrogen source, followed by multiple thermal desorption spectroscopy (TDS) measurements. Electrochemical charging gave rise to a low-temperature peak [323 K to 523 K (50 °C to 250 °C)], originating from the hydrogen trapped near grain boundaries, with activation energy ranging between 24 and 33 kJ/mol, and at small NbC (39 to 48 kJ/mol) or NbN precipitates (23 to 24 kJ/mol). Gaseous charging caused a high-temperature TDS peak [723 K to 923 K (450 °C to 650 °C)], which was attributed to the presence of incoherent precipitates. The activation energy for NbC precipitates, charged in a hydrogen atmosphere, ranged between 63 and 68 kJ/mol and between 100 and 143 kJ/mol for NbN precipitates.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-013-2181-1</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Activation energy ; Applied sciences ; Characterization and Evaluation of Materials ; Charging ; Chemical precipitation ; Chemistry and Materials Science ; Desorption ; Exact sciences and technology ; Ferritic stainless steel ; Grain boundaries ; Heat treating ; Hydrogen ; Hydrogen storage ; Materials Science ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Precipitates ; Precipitation ; Spectrum analysis ; Steels ; Structural Materials ; Surfaces and Interfaces ; Thermal desorption spectroscopy ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-05, Vol.45 (5), p.2412-2420</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-a02937587eb4f90bf21b8b9a1a380431e9be9b9b54e646070589b3760fb606e53</citedby><cites>FETCH-LOGICAL-c445t-a02937587eb4f90bf21b8b9a1a380431e9be9b9b54e646070589b3760fb606e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-013-2181-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-013-2181-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28399966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallaert, Elien</creatorcontrib><creatorcontrib>Depover, Tom</creatorcontrib><creatorcontrib>Arafin, Muhammad</creatorcontrib><creatorcontrib>Verbeken, Kim</creatorcontrib><title>Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydrogen traps. The steels were hydrogen charged both electrochemically and/or from the gaseous hydrogen source, followed by multiple thermal desorption spectroscopy (TDS) measurements. Electrochemical charging gave rise to a low-temperature peak [323 K to 523 K (50 °C to 250 °C)], originating from the hydrogen trapped near grain boundaries, with activation energy ranging between 24 and 33 kJ/mol, and at small NbC (39 to 48 kJ/mol) or NbN precipitates (23 to 24 kJ/mol). Gaseous charging caused a high-temperature TDS peak [723 K to 923 K (450 °C to 650 °C)], which was attributed to the presence of incoherent precipitates. The activation energy for NbC precipitates, charged in a hydrogen atmosphere, ranged between 63 and 68 kJ/mol and between 100 and 143 kJ/mol for NbN precipitates.</description><subject>Activation energy</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charging</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Desorption</subject><subject>Exact sciences and technology</subject><subject>Ferritic stainless steel</subject><subject>Grain boundaries</subject><subject>Heat treating</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Spectrum analysis</subject><subject>Steels</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermal desorption spectroscopy</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kFFrFDEQxxexYG39AL4tiOBLdGaTzW4e5axWKG3B8zlM0tm7LXubmOwJ9-3NeUVEEAITkt_8Z_hV1WuE9wjQfciIWqMAlKLBHgU-q86xVVKgUfC83KGTotWNfFG9zPkRANBIfV5t11tOO5rqT5xDissY5vpbZL-kkH2Ih_rqJ017-v0ehnrZcn19eEhhw7NYJ4pxnDf1iiL5cTkciVu3qml-KPW2vk_sxzgutHC-rM4GmjK_eqoX1ffPV-vVtbi5-_J19fFGeKXaRRA0RnZt37FTgwE3NOh6ZwhJ9qAksnHlGNcq1kpDB21vnOw0DE6D5lZeVO9OuTGFH3vOi92N2fM00cxhny3qFqVpVNMX9M0_6GPYp7lsZ7FAsnhtjoF4onxRkhMPNqZxR-lgEezRvT25t8W9Pbq3WHrePiVT9jQNiWY_5j-NZbYxRuvCNScul695w-mvDf4b_gv7npJ7</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Wallaert, Elien</creator><creator>Depover, Tom</creator><creator>Arafin, Muhammad</creator><creator>Verbeken, Kim</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20140501</creationdate><title>Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates</title><author>Wallaert, Elien ; Depover, Tom ; Arafin, Muhammad ; Verbeken, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-a02937587eb4f90bf21b8b9a1a380431e9be9b9b54e646070589b3760fb606e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation energy</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charging</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Desorption</topic><topic>Exact sciences and technology</topic><topic>Ferritic stainless steel</topic><topic>Grain boundaries</topic><topic>Heat treating</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Spectrum analysis</topic><topic>Steels</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermal desorption spectroscopy</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallaert, Elien</creatorcontrib><creatorcontrib>Depover, Tom</creatorcontrib><creatorcontrib>Arafin, Muhammad</creatorcontrib><creatorcontrib>Verbeken, Kim</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallaert, Elien</au><au>Depover, Tom</au><au>Arafin, Muhammad</au><au>Verbeken, Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>45</volume><issue>5</issue><spage>2412</spage><epage>2420</epage><pages>2412-2420</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>In the current study, ferritic steels containing NbC or NbN precipitates were investigated. The materials were subjected to various heat treatments, giving rise to different precipitate size distributions as determined by transmission electron microscopy. Both NbC and NbN precipitates act as hydrogen traps. The steels were hydrogen charged both electrochemically and/or from the gaseous hydrogen source, followed by multiple thermal desorption spectroscopy (TDS) measurements. Electrochemical charging gave rise to a low-temperature peak [323 K to 523 K (50 °C to 250 °C)], originating from the hydrogen trapped near grain boundaries, with activation energy ranging between 24 and 33 kJ/mol, and at small NbC (39 to 48 kJ/mol) or NbN precipitates (23 to 24 kJ/mol). Gaseous charging caused a high-temperature TDS peak [723 K to 923 K (450 °C to 650 °C)], which was attributed to the presence of incoherent precipitates. The activation energy for NbC precipitates, charged in a hydrogen atmosphere, ranged between 63 and 68 kJ/mol and between 100 and 143 kJ/mol for NbN precipitates.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-013-2181-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-05, Vol.45 (5), p.2412-2420
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1651392428
source Springer Nature - Complete Springer Journals
subjects Activation energy
Applied sciences
Characterization and Evaluation of Materials
Charging
Chemical precipitation
Chemistry and Materials Science
Desorption
Exact sciences and technology
Ferritic stainless steel
Grain boundaries
Heat treating
Hydrogen
Hydrogen storage
Materials Science
Metallic Materials
Metals. Metallurgy
Nanotechnology
Precipitates
Precipitation
Spectrum analysis
Steels
Structural Materials
Surfaces and Interfaces
Thermal desorption spectroscopy
Thin Films
title Thermal Desorption Spectroscopy Evaluation of the Hydrogen-Trapping Capacity of NbC and NbN Precipitates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Desorption%20Spectroscopy%20Evaluation%20of%20the%20Hydrogen-Trapping%20Capacity%20of%20NbC%20and%20NbN%20Precipitates&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Wallaert,%20Elien&rft.date=2014-05-01&rft.volume=45&rft.issue=5&rft.spage=2412&rft.epage=2420&rft.pages=2412-2420&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-013-2181-1&rft_dat=%3Cproquest_cross%3E1651392428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513300725&rft_id=info:pmid/&rfr_iscdi=true