Physics-based agent to simulant correlations for vapor phase mass transport
•Determination of agent and simulant transport parameters.•Vapor phase transport in diffusion and advection dominant conditions simulated.•Simulant-to-agent correlation and corresponding validity criteria.•Guidelines provided for chemical warfare agent simulant experimental design. Chemical warfare...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2013-12, Vol.263, p.479-485 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 485 |
---|---|
container_issue | |
container_start_page | 479 |
container_title | Journal of hazardous materials |
container_volume | 263 |
creator | Willis, Matthew P. Varady, Mark J. Pearl, Thomas P. Fouse, Janet C. Riley, Patrick C. Mantooth, Brent A. Lalain, Teri A. |
description | •Determination of agent and simulant transport parameters.•Vapor phase transport in diffusion and advection dominant conditions simulated.•Simulant-to-agent correlation and corresponding validity criteria.•Guidelines provided for chemical warfare agent simulant experimental design.
Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant. |
doi_str_mv | 10.1016/j.jhazmat.2013.09.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651390565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389413007085</els_id><sourcerecordid>1651390565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-f3a07d8a1b3e5c0aafc943f01bc181f2d5ce8ef1b64b09b5948f4fdf29f6e2783</originalsourceid><addsrcrecordid>eNqNkc1rFDEYh4NY7Lb6JyhzEbzM-OZzkpNIsa1Y0IOeQyaTuFlmdta82UL965tlVz3WSxLC837wewh5TaGjQNX7TbdZu9-zKx0DyjswHSjxjKyo7nnLOVfPyQo4iJZrI87JBeIGAGgvxQtyzgRjUmqxIl--rR8weWwHh2Fs3M-wLU1ZGkzzfnL17Zecw-RKWrbYxCU3925Xz9268s3sEJuS3RbrX3lJzqKbMLw63Zfkx_Wn71e37d3Xm89XH-9aLxQtbeQO-lE7OvAgPTgXvRE8Ah081TSyUfqgQ6SDEgOYQRqho4hjZCaqwHrNL8m7Y99dXn7tAxY7J_RhqvuGZY-WKkm5Aankf6BcApPMsKdRoRTvGeeHrvKI-rwg5hDtLqfZ5QdLwR7s2I092bEHOxaMrXZq3ZvTiP0wh_Fv1R8dFXh7Ahx6N8WarE_4j9MgJBOHBD4cuVBjvk8hW_QpbH0YUw6-2HFJT6zyCNedsG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466372335</pqid></control><display><type>article</type><title>Physics-based agent to simulant correlations for vapor phase mass transport</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Willis, Matthew P. ; Varady, Mark J. ; Pearl, Thomas P. ; Fouse, Janet C. ; Riley, Patrick C. ; Mantooth, Brent A. ; Lalain, Teri A.</creator><creatorcontrib>Willis, Matthew P. ; Varady, Mark J. ; Pearl, Thomas P. ; Fouse, Janet C. ; Riley, Patrick C. ; Mantooth, Brent A. ; Lalain, Teri A.</creatorcontrib><description>•Determination of agent and simulant transport parameters.•Vapor phase transport in diffusion and advection dominant conditions simulated.•Simulant-to-agent correlation and corresponding validity criteria.•Guidelines provided for chemical warfare agent simulant experimental design.
Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2013.09.064</identifier><identifier>PMID: 24225584</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Air Pollutants - analysis ; Applied sciences ; Atmospheric pollution ; Chemical engineering ; Chemical warfare ; Chemical warfare agent ; Chemical Warfare Agents - analysis ; Chemical warfare simulants ; Decontamination - methods ; Diffusion ; Droplets ; Environmental Monitoring - methods ; Environmental Restoration and Remediation ; Evaporation ; Exact sciences and technology ; Gases ; Heat and mass transfer. Packings, plates ; Malonates - analysis ; Mathematical models ; Models, Theoretical ; Molecular Weight ; Mustard Gas - analogs & derivatives ; Mustard Gas - analysis ; Parameter estimation ; Particle Size ; Phenyls ; Physics-based models ; Pollution ; Reproducibility of Results ; Safety ; Salicylates - analysis ; Sulfides ; Sulfides - analysis ; Temperature ; Transport ; Vapor emission hazards</subject><ispartof>Journal of hazardous materials, 2013-12, Vol.263, p.479-485</ispartof><rights>2013</rights><rights>2015 INIST-CNRS</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-f3a07d8a1b3e5c0aafc943f01bc181f2d5ce8ef1b64b09b5948f4fdf29f6e2783</citedby><cites>FETCH-LOGICAL-c461t-f3a07d8a1b3e5c0aafc943f01bc181f2d5ce8ef1b64b09b5948f4fdf29f6e2783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2013.09.064$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28045248$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24225584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willis, Matthew P.</creatorcontrib><creatorcontrib>Varady, Mark J.</creatorcontrib><creatorcontrib>Pearl, Thomas P.</creatorcontrib><creatorcontrib>Fouse, Janet C.</creatorcontrib><creatorcontrib>Riley, Patrick C.</creatorcontrib><creatorcontrib>Mantooth, Brent A.</creatorcontrib><creatorcontrib>Lalain, Teri A.</creatorcontrib><title>Physics-based agent to simulant correlations for vapor phase mass transport</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>•Determination of agent and simulant transport parameters.•Vapor phase transport in diffusion and advection dominant conditions simulated.•Simulant-to-agent correlation and corresponding validity criteria.•Guidelines provided for chemical warfare agent simulant experimental design.
Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.</description><subject>Air Pollutants - analysis</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Chemical engineering</subject><subject>Chemical warfare</subject><subject>Chemical warfare agent</subject><subject>Chemical Warfare Agents - analysis</subject><subject>Chemical warfare simulants</subject><subject>Decontamination - methods</subject><subject>Diffusion</subject><subject>Droplets</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Restoration and Remediation</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Gases</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Malonates - analysis</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Molecular Weight</subject><subject>Mustard Gas - analogs & derivatives</subject><subject>Mustard Gas - analysis</subject><subject>Parameter estimation</subject><subject>Particle Size</subject><subject>Phenyls</subject><subject>Physics-based models</subject><subject>Pollution</subject><subject>Reproducibility of Results</subject><subject>Safety</subject><subject>Salicylates - analysis</subject><subject>Sulfides</subject><subject>Sulfides - analysis</subject><subject>Temperature</subject><subject>Transport</subject><subject>Vapor emission hazards</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1rFDEYh4NY7Lb6JyhzEbzM-OZzkpNIsa1Y0IOeQyaTuFlmdta82UL965tlVz3WSxLC837wewh5TaGjQNX7TbdZu9-zKx0DyjswHSjxjKyo7nnLOVfPyQo4iJZrI87JBeIGAGgvxQtyzgRjUmqxIl--rR8weWwHh2Fs3M-wLU1ZGkzzfnL17Zecw-RKWrbYxCU3925Xz9268s3sEJuS3RbrX3lJzqKbMLw63Zfkx_Wn71e37d3Xm89XH-9aLxQtbeQO-lE7OvAgPTgXvRE8Ah081TSyUfqgQ6SDEgOYQRqho4hjZCaqwHrNL8m7Y99dXn7tAxY7J_RhqvuGZY-WKkm5Aankf6BcApPMsKdRoRTvGeeHrvKI-rwg5hDtLqfZ5QdLwR7s2I092bEHOxaMrXZq3ZvTiP0wh_Fv1R8dFXh7Ahx6N8WarE_4j9MgJBOHBD4cuVBjvk8hW_QpbH0YUw6-2HFJT6zyCNedsG8</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Willis, Matthew P.</creator><creator>Varady, Mark J.</creator><creator>Pearl, Thomas P.</creator><creator>Fouse, Janet C.</creator><creator>Riley, Patrick C.</creator><creator>Mantooth, Brent A.</creator><creator>Lalain, Teri A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20131215</creationdate><title>Physics-based agent to simulant correlations for vapor phase mass transport</title><author>Willis, Matthew P. ; Varady, Mark J. ; Pearl, Thomas P. ; Fouse, Janet C. ; Riley, Patrick C. ; Mantooth, Brent A. ; Lalain, Teri A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-f3a07d8a1b3e5c0aafc943f01bc181f2d5ce8ef1b64b09b5948f4fdf29f6e2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Air Pollutants - analysis</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Chemical engineering</topic><topic>Chemical warfare</topic><topic>Chemical warfare agent</topic><topic>Chemical Warfare Agents - analysis</topic><topic>Chemical warfare simulants</topic><topic>Decontamination - methods</topic><topic>Diffusion</topic><topic>Droplets</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Restoration and Remediation</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Gases</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Malonates - analysis</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Molecular Weight</topic><topic>Mustard Gas - analogs & derivatives</topic><topic>Mustard Gas - analysis</topic><topic>Parameter estimation</topic><topic>Particle Size</topic><topic>Phenyls</topic><topic>Physics-based models</topic><topic>Pollution</topic><topic>Reproducibility of Results</topic><topic>Safety</topic><topic>Salicylates - analysis</topic><topic>Sulfides</topic><topic>Sulfides - analysis</topic><topic>Temperature</topic><topic>Transport</topic><topic>Vapor emission hazards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willis, Matthew P.</creatorcontrib><creatorcontrib>Varady, Mark J.</creatorcontrib><creatorcontrib>Pearl, Thomas P.</creatorcontrib><creatorcontrib>Fouse, Janet C.</creatorcontrib><creatorcontrib>Riley, Patrick C.</creatorcontrib><creatorcontrib>Mantooth, Brent A.</creatorcontrib><creatorcontrib>Lalain, Teri A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willis, Matthew P.</au><au>Varady, Mark J.</au><au>Pearl, Thomas P.</au><au>Fouse, Janet C.</au><au>Riley, Patrick C.</au><au>Mantooth, Brent A.</au><au>Lalain, Teri A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-based agent to simulant correlations for vapor phase mass transport</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2013-12-15</date><risdate>2013</risdate><volume>263</volume><spage>479</spage><epage>485</epage><pages>479-485</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>•Determination of agent and simulant transport parameters.•Vapor phase transport in diffusion and advection dominant conditions simulated.•Simulant-to-agent correlation and corresponding validity criteria.•Guidelines provided for chemical warfare agent simulant experimental design.
Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>24225584</pmid><doi>10.1016/j.jhazmat.2013.09.064</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2013-12, Vol.263, p.479-485 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651390565 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Air Pollutants - analysis Applied sciences Atmospheric pollution Chemical engineering Chemical warfare Chemical warfare agent Chemical Warfare Agents - analysis Chemical warfare simulants Decontamination - methods Diffusion Droplets Environmental Monitoring - methods Environmental Restoration and Remediation Evaporation Exact sciences and technology Gases Heat and mass transfer. Packings, plates Malonates - analysis Mathematical models Models, Theoretical Molecular Weight Mustard Gas - analogs & derivatives Mustard Gas - analysis Parameter estimation Particle Size Phenyls Physics-based models Pollution Reproducibility of Results Safety Salicylates - analysis Sulfides Sulfides - analysis Temperature Transport Vapor emission hazards |
title | Physics-based agent to simulant correlations for vapor phase mass transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-based%20agent%20to%20simulant%20correlations%20for%20vapor%20phase%20mass%20transport&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Willis,%20Matthew%20P.&rft.date=2013-12-15&rft.volume=263&rft.spage=479&rft.epage=485&rft.pages=479-485&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2013.09.064&rft_dat=%3Cproquest_cross%3E1651390565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466372335&rft_id=info:pmid/24225584&rft_els_id=S0304389413007085&rfr_iscdi=true |