Physics-based agent to simulant correlations for vapor phase mass transport

•Determination of agent and simulant transport parameters.•Vapor phase transport in diffusion and advection dominant conditions simulated.•Simulant-to-agent correlation and corresponding validity criteria.•Guidelines provided for chemical warfare agent simulant experimental design. Chemical warfare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2013-12, Vol.263, p.479-485
Hauptverfasser: Willis, Matthew P., Varady, Mark J., Pearl, Thomas P., Fouse, Janet C., Riley, Patrick C., Mantooth, Brent A., Lalain, Teri A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue
container_start_page 479
container_title Journal of hazardous materials
container_volume 263
creator Willis, Matthew P.
Varady, Mark J.
Pearl, Thomas P.
Fouse, Janet C.
Riley, Patrick C.
Mantooth, Brent A.
Lalain, Teri A.
description •Determination of agent and simulant transport parameters.•Vapor phase transport in diffusion and advection dominant conditions simulated.•Simulant-to-agent correlation and corresponding validity criteria.•Guidelines provided for chemical warfare agent simulant experimental design. Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.
doi_str_mv 10.1016/j.jhazmat.2013.09.064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651390565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389413007085</els_id><sourcerecordid>1651390565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-f3a07d8a1b3e5c0aafc943f01bc181f2d5ce8ef1b64b09b5948f4fdf29f6e2783</originalsourceid><addsrcrecordid>eNqNkc1rFDEYh4NY7Lb6JyhzEbzM-OZzkpNIsa1Y0IOeQyaTuFlmdta82UL965tlVz3WSxLC837wewh5TaGjQNX7TbdZu9-zKx0DyjswHSjxjKyo7nnLOVfPyQo4iJZrI87JBeIGAGgvxQtyzgRjUmqxIl--rR8weWwHh2Fs3M-wLU1ZGkzzfnL17Zecw-RKWrbYxCU3925Xz9268s3sEJuS3RbrX3lJzqKbMLw63Zfkx_Wn71e37d3Xm89XH-9aLxQtbeQO-lE7OvAgPTgXvRE8Ah081TSyUfqgQ6SDEgOYQRqho4hjZCaqwHrNL8m7Y99dXn7tAxY7J_RhqvuGZY-WKkm5Aankf6BcApPMsKdRoRTvGeeHrvKI-rwg5hDtLqfZ5QdLwR7s2I092bEHOxaMrXZq3ZvTiP0wh_Fv1R8dFXh7Ahx6N8WarE_4j9MgJBOHBD4cuVBjvk8hW_QpbH0YUw6-2HFJT6zyCNedsG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466372335</pqid></control><display><type>article</type><title>Physics-based agent to simulant correlations for vapor phase mass transport</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Willis, Matthew P. ; Varady, Mark J. ; Pearl, Thomas P. ; Fouse, Janet C. ; Riley, Patrick C. ; Mantooth, Brent A. ; Lalain, Teri A.</creator><creatorcontrib>Willis, Matthew P. ; Varady, Mark J. ; Pearl, Thomas P. ; Fouse, Janet C. ; Riley, Patrick C. ; Mantooth, Brent A. ; Lalain, Teri A.</creatorcontrib><description>•Determination of agent and simulant transport parameters.•Vapor phase transport in diffusion and advection dominant conditions simulated.•Simulant-to-agent correlation and corresponding validity criteria.•Guidelines provided for chemical warfare agent simulant experimental design. Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2013.09.064</identifier><identifier>PMID: 24225584</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Air Pollutants - analysis ; Applied sciences ; Atmospheric pollution ; Chemical engineering ; Chemical warfare ; Chemical warfare agent ; Chemical Warfare Agents - analysis ; Chemical warfare simulants ; Decontamination - methods ; Diffusion ; Droplets ; Environmental Monitoring - methods ; Environmental Restoration and Remediation ; Evaporation ; Exact sciences and technology ; Gases ; Heat and mass transfer. Packings, plates ; Malonates - analysis ; Mathematical models ; Models, Theoretical ; Molecular Weight ; Mustard Gas - analogs &amp; derivatives ; Mustard Gas - analysis ; Parameter estimation ; Particle Size ; Phenyls ; Physics-based models ; Pollution ; Reproducibility of Results ; Safety ; Salicylates - analysis ; Sulfides ; Sulfides - analysis ; Temperature ; Transport ; Vapor emission hazards</subject><ispartof>Journal of hazardous materials, 2013-12, Vol.263, p.479-485</ispartof><rights>2013</rights><rights>2015 INIST-CNRS</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-f3a07d8a1b3e5c0aafc943f01bc181f2d5ce8ef1b64b09b5948f4fdf29f6e2783</citedby><cites>FETCH-LOGICAL-c461t-f3a07d8a1b3e5c0aafc943f01bc181f2d5ce8ef1b64b09b5948f4fdf29f6e2783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2013.09.064$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28045248$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24225584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willis, Matthew P.</creatorcontrib><creatorcontrib>Varady, Mark J.</creatorcontrib><creatorcontrib>Pearl, Thomas P.</creatorcontrib><creatorcontrib>Fouse, Janet C.</creatorcontrib><creatorcontrib>Riley, Patrick C.</creatorcontrib><creatorcontrib>Mantooth, Brent A.</creatorcontrib><creatorcontrib>Lalain, Teri A.</creatorcontrib><title>Physics-based agent to simulant correlations for vapor phase mass transport</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>•Determination of agent and simulant transport parameters.•Vapor phase transport in diffusion and advection dominant conditions simulated.•Simulant-to-agent correlation and corresponding validity criteria.•Guidelines provided for chemical warfare agent simulant experimental design. Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.</description><subject>Air Pollutants - analysis</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Chemical engineering</subject><subject>Chemical warfare</subject><subject>Chemical warfare agent</subject><subject>Chemical Warfare Agents - analysis</subject><subject>Chemical warfare simulants</subject><subject>Decontamination - methods</subject><subject>Diffusion</subject><subject>Droplets</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Restoration and Remediation</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Gases</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Malonates - analysis</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Molecular Weight</subject><subject>Mustard Gas - analogs &amp; derivatives</subject><subject>Mustard Gas - analysis</subject><subject>Parameter estimation</subject><subject>Particle Size</subject><subject>Phenyls</subject><subject>Physics-based models</subject><subject>Pollution</subject><subject>Reproducibility of Results</subject><subject>Safety</subject><subject>Salicylates - analysis</subject><subject>Sulfides</subject><subject>Sulfides - analysis</subject><subject>Temperature</subject><subject>Transport</subject><subject>Vapor emission hazards</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1rFDEYh4NY7Lb6JyhzEbzM-OZzkpNIsa1Y0IOeQyaTuFlmdta82UL965tlVz3WSxLC837wewh5TaGjQNX7TbdZu9-zKx0DyjswHSjxjKyo7nnLOVfPyQo4iJZrI87JBeIGAGgvxQtyzgRjUmqxIl--rR8weWwHh2Fs3M-wLU1ZGkzzfnL17Zecw-RKWrbYxCU3925Xz9268s3sEJuS3RbrX3lJzqKbMLw63Zfkx_Wn71e37d3Xm89XH-9aLxQtbeQO-lE7OvAgPTgXvRE8Ah081TSyUfqgQ6SDEgOYQRqho4hjZCaqwHrNL8m7Y99dXn7tAxY7J_RhqvuGZY-WKkm5Aankf6BcApPMsKdRoRTvGeeHrvKI-rwg5hDtLqfZ5QdLwR7s2I092bEHOxaMrXZq3ZvTiP0wh_Fv1R8dFXh7Ahx6N8WarE_4j9MgJBOHBD4cuVBjvk8hW_QpbH0YUw6-2HFJT6zyCNedsG8</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Willis, Matthew P.</creator><creator>Varady, Mark J.</creator><creator>Pearl, Thomas P.</creator><creator>Fouse, Janet C.</creator><creator>Riley, Patrick C.</creator><creator>Mantooth, Brent A.</creator><creator>Lalain, Teri A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20131215</creationdate><title>Physics-based agent to simulant correlations for vapor phase mass transport</title><author>Willis, Matthew P. ; Varady, Mark J. ; Pearl, Thomas P. ; Fouse, Janet C. ; Riley, Patrick C. ; Mantooth, Brent A. ; Lalain, Teri A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-f3a07d8a1b3e5c0aafc943f01bc181f2d5ce8ef1b64b09b5948f4fdf29f6e2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Air Pollutants - analysis</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Chemical engineering</topic><topic>Chemical warfare</topic><topic>Chemical warfare agent</topic><topic>Chemical Warfare Agents - analysis</topic><topic>Chemical warfare simulants</topic><topic>Decontamination - methods</topic><topic>Diffusion</topic><topic>Droplets</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Restoration and Remediation</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Gases</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Malonates - analysis</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Molecular Weight</topic><topic>Mustard Gas - analogs &amp; derivatives</topic><topic>Mustard Gas - analysis</topic><topic>Parameter estimation</topic><topic>Particle Size</topic><topic>Phenyls</topic><topic>Physics-based models</topic><topic>Pollution</topic><topic>Reproducibility of Results</topic><topic>Safety</topic><topic>Salicylates - analysis</topic><topic>Sulfides</topic><topic>Sulfides - analysis</topic><topic>Temperature</topic><topic>Transport</topic><topic>Vapor emission hazards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willis, Matthew P.</creatorcontrib><creatorcontrib>Varady, Mark J.</creatorcontrib><creatorcontrib>Pearl, Thomas P.</creatorcontrib><creatorcontrib>Fouse, Janet C.</creatorcontrib><creatorcontrib>Riley, Patrick C.</creatorcontrib><creatorcontrib>Mantooth, Brent A.</creatorcontrib><creatorcontrib>Lalain, Teri A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willis, Matthew P.</au><au>Varady, Mark J.</au><au>Pearl, Thomas P.</au><au>Fouse, Janet C.</au><au>Riley, Patrick C.</au><au>Mantooth, Brent A.</au><au>Lalain, Teri A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-based agent to simulant correlations for vapor phase mass transport</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2013-12-15</date><risdate>2013</risdate><volume>263</volume><spage>479</spage><epage>485</epage><pages>479-485</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>•Determination of agent and simulant transport parameters.•Vapor phase transport in diffusion and advection dominant conditions simulated.•Simulant-to-agent correlation and corresponding validity criteria.•Guidelines provided for chemical warfare agent simulant experimental design. Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>24225584</pmid><doi>10.1016/j.jhazmat.2013.09.064</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2013-12, Vol.263, p.479-485
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_1651390565
source MEDLINE; Elsevier ScienceDirect Journals
subjects Air Pollutants - analysis
Applied sciences
Atmospheric pollution
Chemical engineering
Chemical warfare
Chemical warfare agent
Chemical Warfare Agents - analysis
Chemical warfare simulants
Decontamination - methods
Diffusion
Droplets
Environmental Monitoring - methods
Environmental Restoration and Remediation
Evaporation
Exact sciences and technology
Gases
Heat and mass transfer. Packings, plates
Malonates - analysis
Mathematical models
Models, Theoretical
Molecular Weight
Mustard Gas - analogs & derivatives
Mustard Gas - analysis
Parameter estimation
Particle Size
Phenyls
Physics-based models
Pollution
Reproducibility of Results
Safety
Salicylates - analysis
Sulfides
Sulfides - analysis
Temperature
Transport
Vapor emission hazards
title Physics-based agent to simulant correlations for vapor phase mass transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-based%20agent%20to%20simulant%20correlations%20for%20vapor%20phase%20mass%20transport&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Willis,%20Matthew%20P.&rft.date=2013-12-15&rft.volume=263&rft.spage=479&rft.epage=485&rft.pages=479-485&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2013.09.064&rft_dat=%3Cproquest_cross%3E1651390565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466372335&rft_id=info:pmid/24225584&rft_els_id=S0304389413007085&rfr_iscdi=true