A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations

In this paper we propose a new spatially high order accurate semi-implicit discontinuous Galerkin (DG) method for the solution of the two dimensional incompressible Navier–Stokes equations on staggered unstructured curved meshes. While the discrete pressure is defined on the primal grid, the discret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-12, Vol.248, p.70-92
Hauptverfasser: Tavelli, Maurizio, Dumbser, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 70
container_title Applied mathematics and computation
container_volume 248
creator Tavelli, Maurizio
Dumbser, Michael
description In this paper we propose a new spatially high order accurate semi-implicit discontinuous Galerkin (DG) method for the solution of the two dimensional incompressible Navier–Stokes equations on staggered unstructured curved meshes. While the discrete pressure is defined on the primal grid, the discrete velocity vector field is defined on an edge-based dual grid. The flexibility of high order DG methods on curved unstructured meshes allows to discretize even complex physical domains on rather coarse grids. Formal substitution of the discrete momentum equation into the discrete continuity equation yields one sparse linear equation system with four non-zero blocks per element for only one scalar unknown, namely the pressure. The method is computationally efficient, since the resulting system is not only very sparse but also symmetric and positive definite for appropriate boundary conditions. Furthermore, all the volume and surface integrals needed by the scheme presented in this paper depend only on the geometry and the polynomial degree of the basis and test functions and can therefore be precomputed and stored in a preprocessor stage, which leads to savings in terms of computational effort for the time evolution part. In this way also the extension to a fully curved isoparametric approach becomes natural and affects only the preprocessing step. The method is validated for polynomial degrees up to p=3 by solving some typical numerical test problems and comparing the numerical results with available analytical solutions or other numerical and experimental reference data.
doi_str_mv 10.1016/j.amc.2014.09.089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651389172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314013149</els_id><sourcerecordid>1651389172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-6ea4004fe9e4f54af17af0b8436602bde8378975cb78d6d3fbabefb683c0ad8b3</originalsourceid><addsrcrecordid>eNp9kLFu2zAURYkiBeqk-YBsHLNIfTRlikImw0icAkE7pJ0JinxMaEuiTdJpsvUf-of9ktJw5k5vOfcB5xByxaBmwMSXTa1HU8-BNTV0NcjuA5kx2fJqIZrujMwAOlFxAP6JnKe0AYBWsGZGXpc0Zf30hBEtTTj6yo-7wRufqfXJhCn76RAOia71gHHrJzpifg6WuhBpfkaaf4VCjjglHyY9UD-ZMO4ipuT7Aek3_eIx_v395zGHLSaK-4POhUyfyUenh4SX7_eC_Ly7_bG6rx6-r7-ulg-V4S3PlUDdADQOO2zcotGOtdpBLxsuBMx7i5K3smsXpm-lFZa7XvfoeiG5AW1lzy_I9envLob9AVNWY_HCYdATFi_FxIJx2bF2XlB2Qk0MKUV0ahf9qOObYqCOldVGlcrqWFlBp0rlsrk5bbA4HFVVMh4ng9ZHNFnZ4P-z_gf8son_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651389172</pqid></control><display><type>article</type><title>A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tavelli, Maurizio ; Dumbser, Michael</creator><creatorcontrib>Tavelli, Maurizio ; Dumbser, Michael</creatorcontrib><description>In this paper we propose a new spatially high order accurate semi-implicit discontinuous Galerkin (DG) method for the solution of the two dimensional incompressible Navier–Stokes equations on staggered unstructured curved meshes. While the discrete pressure is defined on the primal grid, the discrete velocity vector field is defined on an edge-based dual grid. The flexibility of high order DG methods on curved unstructured meshes allows to discretize even complex physical domains on rather coarse grids. Formal substitution of the discrete momentum equation into the discrete continuity equation yields one sparse linear equation system with four non-zero blocks per element for only one scalar unknown, namely the pressure. The method is computationally efficient, since the resulting system is not only very sparse but also symmetric and positive definite for appropriate boundary conditions. Furthermore, all the volume and surface integrals needed by the scheme presented in this paper depend only on the geometry and the polynomial degree of the basis and test functions and can therefore be precomputed and stored in a preprocessor stage, which leads to savings in terms of computational effort for the time evolution part. In this way also the extension to a fully curved isoparametric approach becomes natural and affects only the preprocessing step. The method is validated for polynomial degrees up to p=3 by solving some typical numerical test problems and comparing the numerical results with available analytical solutions or other numerical and experimental reference data.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.09.089</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computation ; Curved ; Curved isoparametric elements ; Galerkin methods ; High order staggered finite element schemes ; Incompressible Navier–Stokes equations ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; Polynomials ; Semi-implicit discontinuous Galerkin schemes ; Staggered unstructured triangular meshes ; Two dimensional</subject><ispartof>Applied mathematics and computation, 2014-12, Vol.248, p.70-92</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-6ea4004fe9e4f54af17af0b8436602bde8378975cb78d6d3fbabefb683c0ad8b3</citedby><cites>FETCH-LOGICAL-c373t-6ea4004fe9e4f54af17af0b8436602bde8378975cb78d6d3fbabefb683c0ad8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2014.09.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tavelli, Maurizio</creatorcontrib><creatorcontrib>Dumbser, Michael</creatorcontrib><title>A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations</title><title>Applied mathematics and computation</title><description>In this paper we propose a new spatially high order accurate semi-implicit discontinuous Galerkin (DG) method for the solution of the two dimensional incompressible Navier–Stokes equations on staggered unstructured curved meshes. While the discrete pressure is defined on the primal grid, the discrete velocity vector field is defined on an edge-based dual grid. The flexibility of high order DG methods on curved unstructured meshes allows to discretize even complex physical domains on rather coarse grids. Formal substitution of the discrete momentum equation into the discrete continuity equation yields one sparse linear equation system with four non-zero blocks per element for only one scalar unknown, namely the pressure. The method is computationally efficient, since the resulting system is not only very sparse but also symmetric and positive definite for appropriate boundary conditions. Furthermore, all the volume and surface integrals needed by the scheme presented in this paper depend only on the geometry and the polynomial degree of the basis and test functions and can therefore be precomputed and stored in a preprocessor stage, which leads to savings in terms of computational effort for the time evolution part. In this way also the extension to a fully curved isoparametric approach becomes natural and affects only the preprocessing step. The method is validated for polynomial degrees up to p=3 by solving some typical numerical test problems and comparing the numerical results with available analytical solutions or other numerical and experimental reference data.</description><subject>Computation</subject><subject>Curved</subject><subject>Curved isoparametric elements</subject><subject>Galerkin methods</subject><subject>High order staggered finite element schemes</subject><subject>Incompressible Navier–Stokes equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Polynomials</subject><subject>Semi-implicit discontinuous Galerkin schemes</subject><subject>Staggered unstructured triangular meshes</subject><subject>Two dimensional</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLFu2zAURYkiBeqk-YBsHLNIfTRlikImw0icAkE7pJ0JinxMaEuiTdJpsvUf-of9ktJw5k5vOfcB5xByxaBmwMSXTa1HU8-BNTV0NcjuA5kx2fJqIZrujMwAOlFxAP6JnKe0AYBWsGZGXpc0Zf30hBEtTTj6yo-7wRufqfXJhCn76RAOia71gHHrJzpifg6WuhBpfkaaf4VCjjglHyY9UD-ZMO4ipuT7Aek3_eIx_v395zGHLSaK-4POhUyfyUenh4SX7_eC_Ly7_bG6rx6-r7-ulg-V4S3PlUDdADQOO2zcotGOtdpBLxsuBMx7i5K3smsXpm-lFZa7XvfoeiG5AW1lzy_I9envLob9AVNWY_HCYdATFi_FxIJx2bF2XlB2Qk0MKUV0ahf9qOObYqCOldVGlcrqWFlBp0rlsrk5bbA4HFVVMh4ng9ZHNFnZ4P-z_gf8son_</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Tavelli, Maurizio</creator><creator>Dumbser, Michael</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations</title><author>Tavelli, Maurizio ; Dumbser, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-6ea4004fe9e4f54af17af0b8436602bde8378975cb78d6d3fbabefb683c0ad8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computation</topic><topic>Curved</topic><topic>Curved isoparametric elements</topic><topic>Galerkin methods</topic><topic>High order staggered finite element schemes</topic><topic>Incompressible Navier–Stokes equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Polynomials</topic><topic>Semi-implicit discontinuous Galerkin schemes</topic><topic>Staggered unstructured triangular meshes</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavelli, Maurizio</creatorcontrib><creatorcontrib>Dumbser, Michael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavelli, Maurizio</au><au>Dumbser, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>248</volume><spage>70</spage><epage>92</epage><pages>70-92</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this paper we propose a new spatially high order accurate semi-implicit discontinuous Galerkin (DG) method for the solution of the two dimensional incompressible Navier–Stokes equations on staggered unstructured curved meshes. While the discrete pressure is defined on the primal grid, the discrete velocity vector field is defined on an edge-based dual grid. The flexibility of high order DG methods on curved unstructured meshes allows to discretize even complex physical domains on rather coarse grids. Formal substitution of the discrete momentum equation into the discrete continuity equation yields one sparse linear equation system with four non-zero blocks per element for only one scalar unknown, namely the pressure. The method is computationally efficient, since the resulting system is not only very sparse but also symmetric and positive definite for appropriate boundary conditions. Furthermore, all the volume and surface integrals needed by the scheme presented in this paper depend only on the geometry and the polynomial degree of the basis and test functions and can therefore be precomputed and stored in a preprocessor stage, which leads to savings in terms of computational effort for the time evolution part. In this way also the extension to a fully curved isoparametric approach becomes natural and affects only the preprocessing step. The method is validated for polynomial degrees up to p=3 by solving some typical numerical test problems and comparing the numerical results with available analytical solutions or other numerical and experimental reference data.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.09.089</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-12, Vol.248, p.70-92
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1651389172
source Access via ScienceDirect (Elsevier)
subjects Computation
Curved
Curved isoparametric elements
Galerkin methods
High order staggered finite element schemes
Incompressible Navier–Stokes equations
Mathematical analysis
Mathematical models
Navier-Stokes equations
Polynomials
Semi-implicit discontinuous Galerkin schemes
Staggered unstructured triangular meshes
Two dimensional
title A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20staggered%20semi-implicit%20discontinuous%20Galerkin%20method%20for%20the%20two%20dimensional%20incompressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Tavelli,%20Maurizio&rft.date=2014-12-01&rft.volume=248&rft.spage=70&rft.epage=92&rft.pages=70-92&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.09.089&rft_dat=%3Cproquest_cross%3E1651389172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651389172&rft_id=info:pmid/&rft_els_id=S0096300314013149&rfr_iscdi=true