Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia
We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Abso...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2014-12, Vol.16 (12), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 16 |
creator | Lima, Enio De Biasi, Emilio Zysler, Roberto D. Vasquez Mansilla, Marcelo Mojica-Pisciotti, Mary L. Torres, Teobaldo E. Calatayud, M. Pilar Marquina, C. Ricardo Ibarra, M. Goya, Gerardo F. |
description | We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH. |
doi_str_mv | 10.1007/s11051-014-2791-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651384610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651384610</sourcerecordid><originalsourceid>FETCH-LOGICAL-p189t-18be362474761d16a8dfbe40b8399e761ce7325ca1bb7107cc1e367fbdcd75173</originalsourceid><addsrcrecordid>eNpd0MtKxDAUgOEiCo6jD-Au4MZNNKdpk3YpgzcYEETBXUnT0zZDm9YkBX17M4wLcZPkhI8Q_iS5BHYDjMlbD8ByoAwymsoSqDhKVpDLlBal-DiOZ14UlEmRnSZn3u8YA5GW6SpRrzioLxXMZEkwI5LGqM6pkbSTI6ZBG0z7bWxHelSBdGjRHfCIulfW-NETEyfVWQxGk3ZYTEP67xld6NGNRp0nJ60aPF787uvk_eH-bfNEty-Pz5u7LZ2hKAOFokYu0kxmUkADQhVNW2PG6oKXJcY7jZKnuVZQ1xKY1Bqil23d6EbmIPk6uT68O7vpc0EfqtF4jcOgLE6Lr0DkMUImgEV69Y_upsXZ-LuoeMkhrhBVelB-drEAuj-KVfvq1aF6FatX--qV4D9l1XYp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639311631</pqid></control><display><type>article</type><title>Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia</title><source>SpringerLink Journals</source><creator>Lima, Enio ; De Biasi, Emilio ; Zysler, Roberto D. ; Vasquez Mansilla, Marcelo ; Mojica-Pisciotti, Mary L. ; Torres, Teobaldo E. ; Calatayud, M. Pilar ; Marquina, C. ; Ricardo Ibarra, M. ; Goya, Gerardo F.</creator><creatorcontrib>Lima, Enio ; De Biasi, Emilio ; Zysler, Roberto D. ; Vasquez Mansilla, Marcelo ; Mojica-Pisciotti, Mary L. ; Torres, Teobaldo E. ; Calatayud, M. Pilar ; Marquina, C. ; Ricardo Ibarra, M. ; Goya, Gerardo F.</creatorcontrib><description>We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-014-2791-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anisotropy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Colloids ; Dispersions ; Estimating ; Hyperthermia ; Inorganic Chemistry ; Lasers ; Magnetic fields ; Magnetic fluids ; Materials Science ; Nanoparticles ; Nanostructure ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Relaxation time ; Research Paper</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2014-12, Vol.16 (12), p.1-11</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p189t-18be362474761d16a8dfbe40b8399e761ce7325ca1bb7107cc1e367fbdcd75173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-014-2791-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-014-2791-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lima, Enio</creatorcontrib><creatorcontrib>De Biasi, Emilio</creatorcontrib><creatorcontrib>Zysler, Roberto D.</creatorcontrib><creatorcontrib>Vasquez Mansilla, Marcelo</creatorcontrib><creatorcontrib>Mojica-Pisciotti, Mary L.</creatorcontrib><creatorcontrib>Torres, Teobaldo E.</creatorcontrib><creatorcontrib>Calatayud, M. Pilar</creatorcontrib><creatorcontrib>Marquina, C.</creatorcontrib><creatorcontrib>Ricardo Ibarra, M.</creatorcontrib><creatorcontrib>Goya, Gerardo F.</creatorcontrib><title>Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.</description><subject>Anisotropy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Colloids</subject><subject>Dispersions</subject><subject>Estimating</subject><subject>Hyperthermia</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Magnetic fluids</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Relaxation time</subject><subject>Research Paper</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0MtKxDAUgOEiCo6jD-Au4MZNNKdpk3YpgzcYEETBXUnT0zZDm9YkBX17M4wLcZPkhI8Q_iS5BHYDjMlbD8ByoAwymsoSqDhKVpDLlBal-DiOZ14UlEmRnSZn3u8YA5GW6SpRrzioLxXMZEkwI5LGqM6pkbSTI6ZBG0z7bWxHelSBdGjRHfCIulfW-NETEyfVWQxGk3ZYTEP67xld6NGNRp0nJ60aPF787uvk_eH-bfNEty-Pz5u7LZ2hKAOFokYu0kxmUkADQhVNW2PG6oKXJcY7jZKnuVZQ1xKY1Bqil23d6EbmIPk6uT68O7vpc0EfqtF4jcOgLE6Lr0DkMUImgEV69Y_upsXZ-LuoeMkhrhBVelB-drEAuj-KVfvq1aF6FatX--qV4D9l1XYp</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lima, Enio</creator><creator>De Biasi, Emilio</creator><creator>Zysler, Roberto D.</creator><creator>Vasquez Mansilla, Marcelo</creator><creator>Mojica-Pisciotti, Mary L.</creator><creator>Torres, Teobaldo E.</creator><creator>Calatayud, M. Pilar</creator><creator>Marquina, C.</creator><creator>Ricardo Ibarra, M.</creator><creator>Goya, Gerardo F.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20141201</creationdate><title>Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia</title><author>Lima, Enio ; De Biasi, Emilio ; Zysler, Roberto D. ; Vasquez Mansilla, Marcelo ; Mojica-Pisciotti, Mary L. ; Torres, Teobaldo E. ; Calatayud, M. Pilar ; Marquina, C. ; Ricardo Ibarra, M. ; Goya, Gerardo F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p189t-18be362474761d16a8dfbe40b8399e761ce7325ca1bb7107cc1e367fbdcd75173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Colloids</topic><topic>Dispersions</topic><topic>Estimating</topic><topic>Hyperthermia</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Magnetic fluids</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Relaxation time</topic><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Lima, Enio</creatorcontrib><creatorcontrib>De Biasi, Emilio</creatorcontrib><creatorcontrib>Zysler, Roberto D.</creatorcontrib><creatorcontrib>Vasquez Mansilla, Marcelo</creatorcontrib><creatorcontrib>Mojica-Pisciotti, Mary L.</creatorcontrib><creatorcontrib>Torres, Teobaldo E.</creatorcontrib><creatorcontrib>Calatayud, M. Pilar</creatorcontrib><creatorcontrib>Marquina, C.</creatorcontrib><creatorcontrib>Ricardo Ibarra, M.</creatorcontrib><creatorcontrib>Goya, Gerardo F.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Enio</au><au>De Biasi, Emilio</au><au>Zysler, Roberto D.</au><au>Vasquez Mansilla, Marcelo</au><au>Mojica-Pisciotti, Mary L.</au><au>Torres, Teobaldo E.</au><au>Calatayud, M. Pilar</au><au>Marquina, C.</au><au>Ricardo Ibarra, M.</au><au>Goya, Gerardo F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>16</volume><issue>12</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-014-2791-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2014-12, Vol.16 (12), p.1-11 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_miscellaneous_1651384610 |
source | SpringerLink Journals |
subjects | Anisotropy Characterization and Evaluation of Materials Chemistry and Materials Science Colloids Dispersions Estimating Hyperthermia Inorganic Chemistry Lasers Magnetic fields Magnetic fluids Materials Science Nanoparticles Nanostructure Nanotechnology Optical Devices Optics Photonics Physical Chemistry Relaxation time Research Paper |
title | Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20time%20diagram%20for%20identifying%20heat%20generation%20mechanisms%20in%20magnetic%20fluid%20hyperthermia&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Lima,%20Enio&rft.date=2014-12-01&rft.volume=16&rft.issue=12&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-014-2791-6&rft_dat=%3Cproquest_sprin%3E1651384610%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639311631&rft_id=info:pmid/&rfr_iscdi=true |