Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia

We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Abso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2014-12, Vol.16 (12), p.1-11
Hauptverfasser: Lima, Enio, De Biasi, Emilio, Zysler, Roberto D., Vasquez Mansilla, Marcelo, Mojica-Pisciotti, Mary L., Torres, Teobaldo E., Calatayud, M. Pilar, Marquina, C., Ricardo Ibarra, M., Goya, Gerardo F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 12
container_start_page 1
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 16
creator Lima, Enio
De Biasi, Emilio
Zysler, Roberto D.
Vasquez Mansilla, Marcelo
Mojica-Pisciotti, Mary L.
Torres, Teobaldo E.
Calatayud, M. Pilar
Marquina, C.
Ricardo Ibarra, M.
Goya, Gerardo F.
description We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.
doi_str_mv 10.1007/s11051-014-2791-6
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651384610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651384610</sourcerecordid><originalsourceid>FETCH-LOGICAL-p189t-18be362474761d16a8dfbe40b8399e761ce7325ca1bb7107cc1e367fbdcd75173</originalsourceid><addsrcrecordid>eNpd0MtKxDAUgOEiCo6jD-Au4MZNNKdpk3YpgzcYEETBXUnT0zZDm9YkBX17M4wLcZPkhI8Q_iS5BHYDjMlbD8ByoAwymsoSqDhKVpDLlBal-DiOZ14UlEmRnSZn3u8YA5GW6SpRrzioLxXMZEkwI5LGqM6pkbSTI6ZBG0z7bWxHelSBdGjRHfCIulfW-NETEyfVWQxGk3ZYTEP67xld6NGNRp0nJ60aPF787uvk_eH-bfNEty-Pz5u7LZ2hKAOFokYu0kxmUkADQhVNW2PG6oKXJcY7jZKnuVZQ1xKY1Bqil23d6EbmIPk6uT68O7vpc0EfqtF4jcOgLE6Lr0DkMUImgEV69Y_upsXZ-LuoeMkhrhBVelB-drEAuj-KVfvq1aF6FatX--qV4D9l1XYp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639311631</pqid></control><display><type>article</type><title>Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia</title><source>SpringerLink Journals</source><creator>Lima, Enio ; De Biasi, Emilio ; Zysler, Roberto D. ; Vasquez Mansilla, Marcelo ; Mojica-Pisciotti, Mary L. ; Torres, Teobaldo E. ; Calatayud, M. Pilar ; Marquina, C. ; Ricardo Ibarra, M. ; Goya, Gerardo F.</creator><creatorcontrib>Lima, Enio ; De Biasi, Emilio ; Zysler, Roberto D. ; Vasquez Mansilla, Marcelo ; Mojica-Pisciotti, Mary L. ; Torres, Teobaldo E. ; Calatayud, M. Pilar ; Marquina, C. ; Ricardo Ibarra, M. ; Goya, Gerardo F.</creatorcontrib><description>We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-014-2791-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anisotropy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Colloids ; Dispersions ; Estimating ; Hyperthermia ; Inorganic Chemistry ; Lasers ; Magnetic fields ; Magnetic fluids ; Materials Science ; Nanoparticles ; Nanostructure ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Relaxation time ; Research Paper</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2014-12, Vol.16 (12), p.1-11</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p189t-18be362474761d16a8dfbe40b8399e761ce7325ca1bb7107cc1e367fbdcd75173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-014-2791-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-014-2791-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lima, Enio</creatorcontrib><creatorcontrib>De Biasi, Emilio</creatorcontrib><creatorcontrib>Zysler, Roberto D.</creatorcontrib><creatorcontrib>Vasquez Mansilla, Marcelo</creatorcontrib><creatorcontrib>Mojica-Pisciotti, Mary L.</creatorcontrib><creatorcontrib>Torres, Teobaldo E.</creatorcontrib><creatorcontrib>Calatayud, M. Pilar</creatorcontrib><creatorcontrib>Marquina, C.</creatorcontrib><creatorcontrib>Ricardo Ibarra, M.</creatorcontrib><creatorcontrib>Goya, Gerardo F.</creatorcontrib><title>Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.</description><subject>Anisotropy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Colloids</subject><subject>Dispersions</subject><subject>Estimating</subject><subject>Hyperthermia</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Magnetic fluids</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Relaxation time</subject><subject>Research Paper</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0MtKxDAUgOEiCo6jD-Au4MZNNKdpk3YpgzcYEETBXUnT0zZDm9YkBX17M4wLcZPkhI8Q_iS5BHYDjMlbD8ByoAwymsoSqDhKVpDLlBal-DiOZ14UlEmRnSZn3u8YA5GW6SpRrzioLxXMZEkwI5LGqM6pkbSTI6ZBG0z7bWxHelSBdGjRHfCIulfW-NETEyfVWQxGk3ZYTEP67xld6NGNRp0nJ60aPF787uvk_eH-bfNEty-Pz5u7LZ2hKAOFokYu0kxmUkADQhVNW2PG6oKXJcY7jZKnuVZQ1xKY1Bqil23d6EbmIPk6uT68O7vpc0EfqtF4jcOgLE6Lr0DkMUImgEV69Y_upsXZ-LuoeMkhrhBVelB-drEAuj-KVfvq1aF6FatX--qV4D9l1XYp</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lima, Enio</creator><creator>De Biasi, Emilio</creator><creator>Zysler, Roberto D.</creator><creator>Vasquez Mansilla, Marcelo</creator><creator>Mojica-Pisciotti, Mary L.</creator><creator>Torres, Teobaldo E.</creator><creator>Calatayud, M. Pilar</creator><creator>Marquina, C.</creator><creator>Ricardo Ibarra, M.</creator><creator>Goya, Gerardo F.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20141201</creationdate><title>Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia</title><author>Lima, Enio ; De Biasi, Emilio ; Zysler, Roberto D. ; Vasquez Mansilla, Marcelo ; Mojica-Pisciotti, Mary L. ; Torres, Teobaldo E. ; Calatayud, M. Pilar ; Marquina, C. ; Ricardo Ibarra, M. ; Goya, Gerardo F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p189t-18be362474761d16a8dfbe40b8399e761ce7325ca1bb7107cc1e367fbdcd75173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Colloids</topic><topic>Dispersions</topic><topic>Estimating</topic><topic>Hyperthermia</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Magnetic fluids</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Relaxation time</topic><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Lima, Enio</creatorcontrib><creatorcontrib>De Biasi, Emilio</creatorcontrib><creatorcontrib>Zysler, Roberto D.</creatorcontrib><creatorcontrib>Vasquez Mansilla, Marcelo</creatorcontrib><creatorcontrib>Mojica-Pisciotti, Mary L.</creatorcontrib><creatorcontrib>Torres, Teobaldo E.</creatorcontrib><creatorcontrib>Calatayud, M. Pilar</creatorcontrib><creatorcontrib>Marquina, C.</creatorcontrib><creatorcontrib>Ricardo Ibarra, M.</creatorcontrib><creatorcontrib>Goya, Gerardo F.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Enio</au><au>De Biasi, Emilio</au><au>Zysler, Roberto D.</au><au>Vasquez Mansilla, Marcelo</au><au>Mojica-Pisciotti, Mary L.</au><au>Torres, Teobaldo E.</au><au>Calatayud, M. Pilar</au><au>Marquina, C.</au><au>Ricardo Ibarra, M.</au><au>Goya, Gerardo F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>16</volume><issue>12</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-014-2791-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2014-12, Vol.16 (12), p.1-11
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_miscellaneous_1651384610
source SpringerLink Journals
subjects Anisotropy
Characterization and Evaluation of Materials
Chemistry and Materials Science
Colloids
Dispersions
Estimating
Hyperthermia
Inorganic Chemistry
Lasers
Magnetic fields
Magnetic fluids
Materials Science
Nanoparticles
Nanostructure
Nanotechnology
Optical Devices
Optics
Photonics
Physical Chemistry
Relaxation time
Research Paper
title Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20time%20diagram%20for%20identifying%20heat%20generation%20mechanisms%20in%20magnetic%20fluid%20hyperthermia&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Lima,%20Enio&rft.date=2014-12-01&rft.volume=16&rft.issue=12&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-014-2791-6&rft_dat=%3Cproquest_sprin%3E1651384610%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639311631&rft_id=info:pmid/&rfr_iscdi=true