Local adaptive shrinkage threshold denoising using curvelet coefficients

A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. The experimental res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2008-02, Vol.44 (4), p.1-1
Hauptverfasser: Bao, Q Z, Gao, J H, Chen, W C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 4
container_start_page 1
container_title Electronics letters
container_volume 44
creator Bao, Q Z
Gao, J H
Chen, W C
description A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. The experimental results show that the proposed method outperforms the exiting curvelet shrinkage threshold method.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651382774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651382774</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-37c031403f2814b0a97ad16ca3187e11984e34f4526fdef0aee4d389460286913</originalsourceid><addsrcrecordid>eNpdjk1LxDAURYMoWEf_Q8CNm0Je872UQR2h4GYW7oaYvkwzxmZs2vn9FnU1m3O5cLjcC1IBl6y2AO-XpGIMeC3BimtyU8phqY21uiKbNnuXqOvccYonpKUf4_Dp9kinfsTS59TRDoccSxz2dP6ln8cTJpyozxhC9BGHqdySq-BSwbv_XJHt89N2vanbt5fX9WNbHxWImmvPOAjGQ2NAfDBntetAecfBaASwRiAXQchGhQ4Dc4ii48YKxRqjLPAVefibPY75e8Yy7b5i8ZiSGzDPZQdKAjeN1mJR78_UQ57HYTm3WI20Ui3kPyQoVpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625956625</pqid></control><display><type>article</type><title>Local adaptive shrinkage threshold denoising using curvelet coefficients</title><source>Alma/SFX Local Collection</source><creator>Bao, Q Z ; Gao, J H ; Chen, W C</creator><creatorcontrib>Bao, Q Z ; Gao, J H ; Chen, W C</creatorcontrib><description>A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. The experimental results show that the proposed method outperforms the exiting curvelet shrinkage threshold method.</description><identifier>ISSN: 0013-5194</identifier><identifier>EISSN: 1350-911X</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: John Wiley &amp; Sons, Inc</publisher><subject>Filtering ; Filtration ; Noise levels ; Noise reduction ; Shrinkage ; Thresholds</subject><ispartof>Electronics letters, 2008-02, Vol.44 (4), p.1-1</ispartof><rights>Copyright The Institution of Engineering &amp; Technology Feb 14, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Bao, Q Z</creatorcontrib><creatorcontrib>Gao, J H</creatorcontrib><creatorcontrib>Chen, W C</creatorcontrib><title>Local adaptive shrinkage threshold denoising using curvelet coefficients</title><title>Electronics letters</title><description>A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. The experimental results show that the proposed method outperforms the exiting curvelet shrinkage threshold method.</description><subject>Filtering</subject><subject>Filtration</subject><subject>Noise levels</subject><subject>Noise reduction</subject><subject>Shrinkage</subject><subject>Thresholds</subject><issn>0013-5194</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjk1LxDAURYMoWEf_Q8CNm0Je872UQR2h4GYW7oaYvkwzxmZs2vn9FnU1m3O5cLjcC1IBl6y2AO-XpGIMeC3BimtyU8phqY21uiKbNnuXqOvccYonpKUf4_Dp9kinfsTS59TRDoccSxz2dP6ln8cTJpyozxhC9BGHqdySq-BSwbv_XJHt89N2vanbt5fX9WNbHxWImmvPOAjGQ2NAfDBntetAecfBaASwRiAXQchGhQ4Dc4ii48YKxRqjLPAVefibPY75e8Yy7b5i8ZiSGzDPZQdKAjeN1mJR78_UQ57HYTm3WI20Ui3kPyQoVpE</recordid><startdate>20080214</startdate><enddate>20080214</enddate><creator>Bao, Q Z</creator><creator>Gao, J H</creator><creator>Chen, W C</creator><general>John Wiley &amp; Sons, Inc</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20080214</creationdate><title>Local adaptive shrinkage threshold denoising using curvelet coefficients</title><author>Bao, Q Z ; Gao, J H ; Chen, W C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-37c031403f2814b0a97ad16ca3187e11984e34f4526fdef0aee4d389460286913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Filtering</topic><topic>Filtration</topic><topic>Noise levels</topic><topic>Noise reduction</topic><topic>Shrinkage</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Q Z</creatorcontrib><creatorcontrib>Gao, J H</creatorcontrib><creatorcontrib>Chen, W C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Q Z</au><au>Gao, J H</au><au>Chen, W C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local adaptive shrinkage threshold denoising using curvelet coefficients</atitle><jtitle>Electronics letters</jtitle><date>2008-02-14</date><risdate>2008</risdate><volume>44</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0013-5194</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. The experimental results show that the proposed method outperforms the exiting curvelet shrinkage threshold method.</abstract><cop>Stevenage</cop><pub>John Wiley &amp; Sons, Inc</pub><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-5194
ispartof Electronics letters, 2008-02, Vol.44 (4), p.1-1
issn 0013-5194
1350-911X
language eng
recordid cdi_proquest_miscellaneous_1651382774
source Alma/SFX Local Collection
subjects Filtering
Filtration
Noise levels
Noise reduction
Shrinkage
Thresholds
title Local adaptive shrinkage threshold denoising using curvelet coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20adaptive%20shrinkage%20threshold%20denoising%20using%20curvelet%20coefficients&rft.jtitle=Electronics%20letters&rft.au=Bao,%20Q%20Z&rft.date=2008-02-14&rft.volume=44&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/&rft_dat=%3Cproquest%3E1651382774%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625956625&rft_id=info:pmid/&rfr_iscdi=true