Local adaptive shrinkage threshold denoising using curvelet coefficients
A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. The experimental res...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2008-02, Vol.44 (4), p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Electronics letters |
container_volume | 44 |
creator | Bao, Q Z Gao, J H Chen, W C |
description | A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. The experimental results show that the proposed method outperforms the exiting curvelet shrinkage threshold method. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651382774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651382774</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-37c031403f2814b0a97ad16ca3187e11984e34f4526fdef0aee4d389460286913</originalsourceid><addsrcrecordid>eNpdjk1LxDAURYMoWEf_Q8CNm0Je872UQR2h4GYW7oaYvkwzxmZs2vn9FnU1m3O5cLjcC1IBl6y2AO-XpGIMeC3BimtyU8phqY21uiKbNnuXqOvccYonpKUf4_Dp9kinfsTS59TRDoccSxz2dP6ln8cTJpyozxhC9BGHqdySq-BSwbv_XJHt89N2vanbt5fX9WNbHxWImmvPOAjGQ2NAfDBntetAecfBaASwRiAXQchGhQ4Dc4ii48YKxRqjLPAVefibPY75e8Yy7b5i8ZiSGzDPZQdKAjeN1mJR78_UQ57HYTm3WI20Ui3kPyQoVpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625956625</pqid></control><display><type>article</type><title>Local adaptive shrinkage threshold denoising using curvelet coefficients</title><source>Alma/SFX Local Collection</source><creator>Bao, Q Z ; Gao, J H ; Chen, W C</creator><creatorcontrib>Bao, Q Z ; Gao, J H ; Chen, W C</creatorcontrib><description>A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. The experimental results show that the proposed method outperforms the exiting curvelet shrinkage threshold method.</description><identifier>ISSN: 0013-5194</identifier><identifier>EISSN: 1350-911X</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: John Wiley & Sons, Inc</publisher><subject>Filtering ; Filtration ; Noise levels ; Noise reduction ; Shrinkage ; Thresholds</subject><ispartof>Electronics letters, 2008-02, Vol.44 (4), p.1-1</ispartof><rights>Copyright The Institution of Engineering & Technology Feb 14, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Bao, Q Z</creatorcontrib><creatorcontrib>Gao, J H</creatorcontrib><creatorcontrib>Chen, W C</creatorcontrib><title>Local adaptive shrinkage threshold denoising using curvelet coefficients</title><title>Electronics letters</title><description>A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. The experimental results show that the proposed method outperforms the exiting curvelet shrinkage threshold method.</description><subject>Filtering</subject><subject>Filtration</subject><subject>Noise levels</subject><subject>Noise reduction</subject><subject>Shrinkage</subject><subject>Thresholds</subject><issn>0013-5194</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjk1LxDAURYMoWEf_Q8CNm0Je872UQR2h4GYW7oaYvkwzxmZs2vn9FnU1m3O5cLjcC1IBl6y2AO-XpGIMeC3BimtyU8phqY21uiKbNnuXqOvccYonpKUf4_Dp9kinfsTS59TRDoccSxz2dP6ln8cTJpyozxhC9BGHqdySq-BSwbv_XJHt89N2vanbt5fX9WNbHxWImmvPOAjGQ2NAfDBntetAecfBaASwRiAXQchGhQ4Dc4ii48YKxRqjLPAVefibPY75e8Yy7b5i8ZiSGzDPZQdKAjeN1mJR78_UQ57HYTm3WI20Ui3kPyQoVpE</recordid><startdate>20080214</startdate><enddate>20080214</enddate><creator>Bao, Q Z</creator><creator>Gao, J H</creator><creator>Chen, W C</creator><general>John Wiley & Sons, Inc</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20080214</creationdate><title>Local adaptive shrinkage threshold denoising using curvelet coefficients</title><author>Bao, Q Z ; Gao, J H ; Chen, W C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-37c031403f2814b0a97ad16ca3187e11984e34f4526fdef0aee4d389460286913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Filtering</topic><topic>Filtration</topic><topic>Noise levels</topic><topic>Noise reduction</topic><topic>Shrinkage</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Q Z</creatorcontrib><creatorcontrib>Gao, J H</creatorcontrib><creatorcontrib>Chen, W C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Q Z</au><au>Gao, J H</au><au>Chen, W C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local adaptive shrinkage threshold denoising using curvelet coefficients</atitle><jtitle>Electronics letters</jtitle><date>2008-02-14</date><risdate>2008</risdate><volume>44</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0013-5194</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>A new local adaptive shrinkage denoising approach based on neighbourhood windows and the scale of curvelet coefficients is presented. Mean filtering and median filtering according to the local characteristic of curvelet coefficients and noise level define the threshold function. The experimental results show that the proposed method outperforms the exiting curvelet shrinkage threshold method.</abstract><cop>Stevenage</cop><pub>John Wiley & Sons, Inc</pub><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2008-02, Vol.44 (4), p.1-1 |
issn | 0013-5194 1350-911X |
language | eng |
recordid | cdi_proquest_miscellaneous_1651382774 |
source | Alma/SFX Local Collection |
subjects | Filtering Filtration Noise levels Noise reduction Shrinkage Thresholds |
title | Local adaptive shrinkage threshold denoising using curvelet coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20adaptive%20shrinkage%20threshold%20denoising%20using%20curvelet%20coefficients&rft.jtitle=Electronics%20letters&rft.au=Bao,%20Q%20Z&rft.date=2008-02-14&rft.volume=44&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/&rft_dat=%3Cproquest%3E1651382774%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625956625&rft_id=info:pmid/&rfr_iscdi=true |