Electrical and mechanical properties of free-standing PMMA–MMT clay composites

Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2014-12, Vol.29 (24), p.2957-2964
Hauptverfasser: Nabirqudri, Syed Abusale Mhamad, Roy, Aashis S., Ambika Prasad, M.V.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2964
container_issue 24
container_start_page 2957
container_title Journal of materials research
container_volume 29
creator Nabirqudri, Syed Abusale Mhamad
Roy, Aashis S.
Ambika Prasad, M.V.N.
description Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that 30 wt% shows highest conductivity of 1.59 × 10−3 S/cm. The negative thermal coefficient behavior of these polymer composite films confirms that the increase in conductivity is due to the elongation of polymer chain which helps in charge transport mechanism. Dielectric study also shows that 30 wt% has the lowest dielectric constant and dielectric loss of 2.5 and 3.3, respectively, resulting in an increase in conductivity of 5 × 10−3 S/cm. The isotropic nature of 30 wt% composite film shows a high quality factor of 0.005 because of overdamping of electron at 104 Hz. Cole–cole plots show that the semi arc originated from a single point and its area decreases with filler concentration up to 30 wt% due to drop in the electrical resistance. Tensile modulus increases because of high MMT aspect ratio and distribution ratio. The 30 wt% of the composite shows high tensile strength at 55 MPa which induces 8% of strain in the PMMA–MMT clay composite films. Therefore, these composite films can be used in many sensor and solar technologies as encapsulation materials.
doi_str_mv 10.1557/jmr.2014.301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651381622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2014_301</cupid><sourcerecordid>1651381622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-3522bfc15fcdd7be069934ff4185a062544fe4d8b63177b78f0a922781f560603</originalsourceid><addsrcrecordid>eNqF0MtKw0AUBuBBFKzVnQ8QcOPCxDPXTJal1AtY7KKuw2QyU1NycyZddOc7-IY-iVPbhYjg6nDgOz-HH6FLDAnmPL1dNy4hgFlCAR-hEQHGYk6JOEYjkJLFJMPsFJ15vwbAHFI2QotZbfTgKq3qSLVl1Bj9qtrvtXddb9xQGR91NrLOmNgPwVTtKlrM55PP94_5fBnpWm0j3TV956vB-HN0YlXtzcVhjtHL3Ww5fYifnu8fp5OnWDMJQ0w5IYXVmFtdlmlhQGQZZdYyLLkCQThj1rBSFoLiNC1SaUFlhKQSWy5AAB2j631uePNtY_yQN5XXpq5Va7qNz7HgmEosCAn06hdddxvXhu-CooITmQEN6mavtOu8d8bmvasa5bY5hnxXbx7qzXf15qHewOM994G1K-N-hP7tk0O8agpXlSvzz8EXAwiK0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636528903</pqid></control><display><type>article</type><title>Electrical and mechanical properties of free-standing PMMA–MMT clay composites</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Nabirqudri, Syed Abusale Mhamad ; Roy, Aashis S. ; Ambika Prasad, M.V.N.</creator><creatorcontrib>Nabirqudri, Syed Abusale Mhamad ; Roy, Aashis S. ; Ambika Prasad, M.V.N.</creatorcontrib><description>Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that 30 wt% shows highest conductivity of 1.59 × 10−3 S/cm. The negative thermal coefficient behavior of these polymer composite films confirms that the increase in conductivity is due to the elongation of polymer chain which helps in charge transport mechanism. Dielectric study also shows that 30 wt% has the lowest dielectric constant and dielectric loss of 2.5 and 3.3, respectively, resulting in an increase in conductivity of 5 × 10−3 S/cm. The isotropic nature of 30 wt% composite film shows a high quality factor of 0.005 because of overdamping of electron at 104 Hz. Cole–cole plots show that the semi arc originated from a single point and its area decreases with filler concentration up to 30 wt% due to drop in the electrical resistance. Tensile modulus increases because of high MMT aspect ratio and distribution ratio. The 30 wt% of the composite shows high tensile strength at 55 MPa which induces 8% of strain in the PMMA–MMT clay composite films. Therefore, these composite films can be used in many sensor and solar technologies as encapsulation materials.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2014.301</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Applied and Technical Physics ; Biomaterials ; Clay (material) ; Composite materials ; Conductivity ; Dielectric constant ; Dielectric loss ; Dielectrics ; Direct current ; Elongation ; Fourier transforms ; Grain size ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Methods ; Morphology ; Nanotechnology ; Polymerization ; Polymers ; Polymethyl methacrylates ; Resistivity ; Scanning electron microscopy ; Silver ; Solvents ; Spectrum analysis ; Studies</subject><ispartof>Journal of materials research, 2014-12, Vol.29 (24), p.2957-2964</ispartof><rights>Copyright © Materials Research Society 2014</rights><rights>The Materials Research Society 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-3522bfc15fcdd7be069934ff4185a062544fe4d8b63177b78f0a922781f560603</citedby><cites>FETCH-LOGICAL-c480t-3522bfc15fcdd7be069934ff4185a062544fe4d8b63177b78f0a922781f560603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2014.301$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S088429141400301X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Nabirqudri, Syed Abusale Mhamad</creatorcontrib><creatorcontrib>Roy, Aashis S.</creatorcontrib><creatorcontrib>Ambika Prasad, M.V.N.</creatorcontrib><title>Electrical and mechanical properties of free-standing PMMA–MMT clay composites</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that 30 wt% shows highest conductivity of 1.59 × 10−3 S/cm. The negative thermal coefficient behavior of these polymer composite films confirms that the increase in conductivity is due to the elongation of polymer chain which helps in charge transport mechanism. Dielectric study also shows that 30 wt% has the lowest dielectric constant and dielectric loss of 2.5 and 3.3, respectively, resulting in an increase in conductivity of 5 × 10−3 S/cm. The isotropic nature of 30 wt% composite film shows a high quality factor of 0.005 because of overdamping of electron at 104 Hz. Cole–cole plots show that the semi arc originated from a single point and its area decreases with filler concentration up to 30 wt% due to drop in the electrical resistance. Tensile modulus increases because of high MMT aspect ratio and distribution ratio. The 30 wt% of the composite shows high tensile strength at 55 MPa which induces 8% of strain in the PMMA–MMT clay composite films. Therefore, these composite films can be used in many sensor and solar technologies as encapsulation materials.</description><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Clay (material)</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Dielectric constant</subject><subject>Dielectric loss</subject><subject>Dielectrics</subject><subject>Direct current</subject><subject>Elongation</subject><subject>Fourier transforms</subject><subject>Grain size</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymethyl methacrylates</subject><subject>Resistivity</subject><subject>Scanning electron microscopy</subject><subject>Silver</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Studies</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0MtKw0AUBuBBFKzVnQ8QcOPCxDPXTJal1AtY7KKuw2QyU1NycyZddOc7-IY-iVPbhYjg6nDgOz-HH6FLDAnmPL1dNy4hgFlCAR-hEQHGYk6JOEYjkJLFJMPsFJ15vwbAHFI2QotZbfTgKq3qSLVl1Bj9qtrvtXddb9xQGR91NrLOmNgPwVTtKlrM55PP94_5fBnpWm0j3TV956vB-HN0YlXtzcVhjtHL3Ww5fYifnu8fp5OnWDMJQ0w5IYXVmFtdlmlhQGQZZdYyLLkCQThj1rBSFoLiNC1SaUFlhKQSWy5AAB2j631uePNtY_yQN5XXpq5Va7qNz7HgmEosCAn06hdddxvXhu-CooITmQEN6mavtOu8d8bmvasa5bY5hnxXbx7qzXf15qHewOM994G1K-N-hP7tk0O8agpXlSvzz8EXAwiK0Q</recordid><startdate>20141228</startdate><enddate>20141228</enddate><creator>Nabirqudri, Syed Abusale Mhamad</creator><creator>Roy, Aashis S.</creator><creator>Ambika Prasad, M.V.N.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20141228</creationdate><title>Electrical and mechanical properties of free-standing PMMA–MMT clay composites</title><author>Nabirqudri, Syed Abusale Mhamad ; Roy, Aashis S. ; Ambika Prasad, M.V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-3522bfc15fcdd7be069934ff4185a062544fe4d8b63177b78f0a922781f560603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Clay (material)</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Dielectric constant</topic><topic>Dielectric loss</topic><topic>Dielectrics</topic><topic>Direct current</topic><topic>Elongation</topic><topic>Fourier transforms</topic><topic>Grain size</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymethyl methacrylates</topic><topic>Resistivity</topic><topic>Scanning electron microscopy</topic><topic>Silver</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabirqudri, Syed Abusale Mhamad</creatorcontrib><creatorcontrib>Roy, Aashis S.</creatorcontrib><creatorcontrib>Ambika Prasad, M.V.N.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabirqudri, Syed Abusale Mhamad</au><au>Roy, Aashis S.</au><au>Ambika Prasad, M.V.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical and mechanical properties of free-standing PMMA–MMT clay composites</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2014-12-28</date><risdate>2014</risdate><volume>29</volume><issue>24</issue><spage>2957</spage><epage>2964</epage><pages>2957-2964</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that 30 wt% shows highest conductivity of 1.59 × 10−3 S/cm. The negative thermal coefficient behavior of these polymer composite films confirms that the increase in conductivity is due to the elongation of polymer chain which helps in charge transport mechanism. Dielectric study also shows that 30 wt% has the lowest dielectric constant and dielectric loss of 2.5 and 3.3, respectively, resulting in an increase in conductivity of 5 × 10−3 S/cm. The isotropic nature of 30 wt% composite film shows a high quality factor of 0.005 because of overdamping of electron at 104 Hz. Cole–cole plots show that the semi arc originated from a single point and its area decreases with filler concentration up to 30 wt% due to drop in the electrical resistance. Tensile modulus increases because of high MMT aspect ratio and distribution ratio. The 30 wt% of the composite shows high tensile strength at 55 MPa which induces 8% of strain in the PMMA–MMT clay composite films. Therefore, these composite films can be used in many sensor and solar technologies as encapsulation materials.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2014.301</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2014-12, Vol.29 (24), p.2957-2964
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_miscellaneous_1651381622
source SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete
subjects Analysis
Applied and Technical Physics
Biomaterials
Clay (material)
Composite materials
Conductivity
Dielectric constant
Dielectric loss
Dielectrics
Direct current
Elongation
Fourier transforms
Grain size
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Mechanical properties
Methods
Morphology
Nanotechnology
Polymerization
Polymers
Polymethyl methacrylates
Resistivity
Scanning electron microscopy
Silver
Solvents
Spectrum analysis
Studies
title Electrical and mechanical properties of free-standing PMMA–MMT clay composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20and%20mechanical%20properties%20of%20free-standing%20PMMA%E2%80%93MMT%20clay%20composites&rft.jtitle=Journal%20of%20materials%20research&rft.au=Nabirqudri,%20Syed%20Abusale%20Mhamad&rft.date=2014-12-28&rft.volume=29&rft.issue=24&rft.spage=2957&rft.epage=2964&rft.pages=2957-2964&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2014.301&rft_dat=%3Cproquest_cross%3E1651381622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1636528903&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2014_301&rfr_iscdi=true