Electrical and mechanical properties of free-standing PMMA–MMT clay composites
Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2014-12, Vol.29 (24), p.2957-2964 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2964 |
---|---|
container_issue | 24 |
container_start_page | 2957 |
container_title | Journal of materials research |
container_volume | 29 |
creator | Nabirqudri, Syed Abusale Mhamad Roy, Aashis S. Ambika Prasad, M.V.N. |
description | Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that 30 wt% shows highest conductivity of 1.59 × 10−3 S/cm. The negative thermal coefficient behavior of these polymer composite films confirms that the increase in conductivity is due to the elongation of polymer chain which helps in charge transport mechanism. Dielectric study also shows that 30 wt% has the lowest dielectric constant and dielectric loss of 2.5 and 3.3, respectively, resulting in an increase in conductivity of 5 × 10−3 S/cm. The isotropic nature of 30 wt% composite film shows a high quality factor of 0.005 because of overdamping of electron at 104 Hz. Cole–cole plots show that the semi arc originated from a single point and its area decreases with filler concentration up to 30 wt% due to drop in the electrical resistance. Tensile modulus increases because of high MMT aspect ratio and distribution ratio. The 30 wt% of the composite shows high tensile strength at 55 MPa which induces 8% of strain in the PMMA–MMT clay composite films. Therefore, these composite films can be used in many sensor and solar technologies as encapsulation materials. |
doi_str_mv | 10.1557/jmr.2014.301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651381622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2014_301</cupid><sourcerecordid>1651381622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-3522bfc15fcdd7be069934ff4185a062544fe4d8b63177b78f0a922781f560603</originalsourceid><addsrcrecordid>eNqF0MtKw0AUBuBBFKzVnQ8QcOPCxDPXTJal1AtY7KKuw2QyU1NycyZddOc7-IY-iVPbhYjg6nDgOz-HH6FLDAnmPL1dNy4hgFlCAR-hEQHGYk6JOEYjkJLFJMPsFJ15vwbAHFI2QotZbfTgKq3qSLVl1Bj9qtrvtXddb9xQGR91NrLOmNgPwVTtKlrM55PP94_5fBnpWm0j3TV956vB-HN0YlXtzcVhjtHL3Ww5fYifnu8fp5OnWDMJQ0w5IYXVmFtdlmlhQGQZZdYyLLkCQThj1rBSFoLiNC1SaUFlhKQSWy5AAB2j631uePNtY_yQN5XXpq5Va7qNz7HgmEosCAn06hdddxvXhu-CooITmQEN6mavtOu8d8bmvasa5bY5hnxXbx7qzXf15qHewOM994G1K-N-hP7tk0O8agpXlSvzz8EXAwiK0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636528903</pqid></control><display><type>article</type><title>Electrical and mechanical properties of free-standing PMMA–MMT clay composites</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Nabirqudri, Syed Abusale Mhamad ; Roy, Aashis S. ; Ambika Prasad, M.V.N.</creator><creatorcontrib>Nabirqudri, Syed Abusale Mhamad ; Roy, Aashis S. ; Ambika Prasad, M.V.N.</creatorcontrib><description>Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that 30 wt% shows highest conductivity of 1.59 × 10−3 S/cm. The negative thermal coefficient behavior of these polymer composite films confirms that the increase in conductivity is due to the elongation of polymer chain which helps in charge transport mechanism. Dielectric study also shows that 30 wt% has the lowest dielectric constant and dielectric loss of 2.5 and 3.3, respectively, resulting in an increase in conductivity of 5 × 10−3 S/cm. The isotropic nature of 30 wt% composite film shows a high quality factor of 0.005 because of overdamping of electron at 104 Hz. Cole–cole plots show that the semi arc originated from a single point and its area decreases with filler concentration up to 30 wt% due to drop in the electrical resistance. Tensile modulus increases because of high MMT aspect ratio and distribution ratio. The 30 wt% of the composite shows high tensile strength at 55 MPa which induces 8% of strain in the PMMA–MMT clay composite films. Therefore, these composite films can be used in many sensor and solar technologies as encapsulation materials.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2014.301</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Applied and Technical Physics ; Biomaterials ; Clay (material) ; Composite materials ; Conductivity ; Dielectric constant ; Dielectric loss ; Dielectrics ; Direct current ; Elongation ; Fourier transforms ; Grain size ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Methods ; Morphology ; Nanotechnology ; Polymerization ; Polymers ; Polymethyl methacrylates ; Resistivity ; Scanning electron microscopy ; Silver ; Solvents ; Spectrum analysis ; Studies</subject><ispartof>Journal of materials research, 2014-12, Vol.29 (24), p.2957-2964</ispartof><rights>Copyright © Materials Research Society 2014</rights><rights>The Materials Research Society 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-3522bfc15fcdd7be069934ff4185a062544fe4d8b63177b78f0a922781f560603</citedby><cites>FETCH-LOGICAL-c480t-3522bfc15fcdd7be069934ff4185a062544fe4d8b63177b78f0a922781f560603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2014.301$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S088429141400301X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Nabirqudri, Syed Abusale Mhamad</creatorcontrib><creatorcontrib>Roy, Aashis S.</creatorcontrib><creatorcontrib>Ambika Prasad, M.V.N.</creatorcontrib><title>Electrical and mechanical properties of free-standing PMMA–MMT clay composites</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that 30 wt% shows highest conductivity of 1.59 × 10−3 S/cm. The negative thermal coefficient behavior of these polymer composite films confirms that the increase in conductivity is due to the elongation of polymer chain which helps in charge transport mechanism. Dielectric study also shows that 30 wt% has the lowest dielectric constant and dielectric loss of 2.5 and 3.3, respectively, resulting in an increase in conductivity of 5 × 10−3 S/cm. The isotropic nature of 30 wt% composite film shows a high quality factor of 0.005 because of overdamping of electron at 104 Hz. Cole–cole plots show that the semi arc originated from a single point and its area decreases with filler concentration up to 30 wt% due to drop in the electrical resistance. Tensile modulus increases because of high MMT aspect ratio and distribution ratio. The 30 wt% of the composite shows high tensile strength at 55 MPa which induces 8% of strain in the PMMA–MMT clay composite films. Therefore, these composite films can be used in many sensor and solar technologies as encapsulation materials.</description><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Clay (material)</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Dielectric constant</subject><subject>Dielectric loss</subject><subject>Dielectrics</subject><subject>Direct current</subject><subject>Elongation</subject><subject>Fourier transforms</subject><subject>Grain size</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymethyl methacrylates</subject><subject>Resistivity</subject><subject>Scanning electron microscopy</subject><subject>Silver</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Studies</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0MtKw0AUBuBBFKzVnQ8QcOPCxDPXTJal1AtY7KKuw2QyU1NycyZddOc7-IY-iVPbhYjg6nDgOz-HH6FLDAnmPL1dNy4hgFlCAR-hEQHGYk6JOEYjkJLFJMPsFJ15vwbAHFI2QotZbfTgKq3qSLVl1Bj9qtrvtXddb9xQGR91NrLOmNgPwVTtKlrM55PP94_5fBnpWm0j3TV956vB-HN0YlXtzcVhjtHL3Ww5fYifnu8fp5OnWDMJQ0w5IYXVmFtdlmlhQGQZZdYyLLkCQThj1rBSFoLiNC1SaUFlhKQSWy5AAB2j631uePNtY_yQN5XXpq5Va7qNz7HgmEosCAn06hdddxvXhu-CooITmQEN6mavtOu8d8bmvasa5bY5hnxXbx7qzXf15qHewOM994G1K-N-hP7tk0O8agpXlSvzz8EXAwiK0Q</recordid><startdate>20141228</startdate><enddate>20141228</enddate><creator>Nabirqudri, Syed Abusale Mhamad</creator><creator>Roy, Aashis S.</creator><creator>Ambika Prasad, M.V.N.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20141228</creationdate><title>Electrical and mechanical properties of free-standing PMMA–MMT clay composites</title><author>Nabirqudri, Syed Abusale Mhamad ; Roy, Aashis S. ; Ambika Prasad, M.V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-3522bfc15fcdd7be069934ff4185a062544fe4d8b63177b78f0a922781f560603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Clay (material)</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Dielectric constant</topic><topic>Dielectric loss</topic><topic>Dielectrics</topic><topic>Direct current</topic><topic>Elongation</topic><topic>Fourier transforms</topic><topic>Grain size</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymethyl methacrylates</topic><topic>Resistivity</topic><topic>Scanning electron microscopy</topic><topic>Silver</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabirqudri, Syed Abusale Mhamad</creatorcontrib><creatorcontrib>Roy, Aashis S.</creatorcontrib><creatorcontrib>Ambika Prasad, M.V.N.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabirqudri, Syed Abusale Mhamad</au><au>Roy, Aashis S.</au><au>Ambika Prasad, M.V.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical and mechanical properties of free-standing PMMA–MMT clay composites</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2014-12-28</date><risdate>2014</risdate><volume>29</volume><issue>24</issue><spage>2957</spage><epage>2964</epage><pages>2957-2964</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that 30 wt% shows highest conductivity of 1.59 × 10−3 S/cm. The negative thermal coefficient behavior of these polymer composite films confirms that the increase in conductivity is due to the elongation of polymer chain which helps in charge transport mechanism. Dielectric study also shows that 30 wt% has the lowest dielectric constant and dielectric loss of 2.5 and 3.3, respectively, resulting in an increase in conductivity of 5 × 10−3 S/cm. The isotropic nature of 30 wt% composite film shows a high quality factor of 0.005 because of overdamping of electron at 104 Hz. Cole–cole plots show that the semi arc originated from a single point and its area decreases with filler concentration up to 30 wt% due to drop in the electrical resistance. Tensile modulus increases because of high MMT aspect ratio and distribution ratio. The 30 wt% of the composite shows high tensile strength at 55 MPa which induces 8% of strain in the PMMA–MMT clay composite films. Therefore, these composite films can be used in many sensor and solar technologies as encapsulation materials.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2014.301</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2014-12, Vol.29 (24), p.2957-2964 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651381622 |
source | SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete |
subjects | Analysis Applied and Technical Physics Biomaterials Clay (material) Composite materials Conductivity Dielectric constant Dielectric loss Dielectrics Direct current Elongation Fourier transforms Grain size Inorganic Chemistry Materials Engineering Materials research Materials Science Mechanical properties Methods Morphology Nanotechnology Polymerization Polymers Polymethyl methacrylates Resistivity Scanning electron microscopy Silver Solvents Spectrum analysis Studies |
title | Electrical and mechanical properties of free-standing PMMA–MMT clay composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20and%20mechanical%20properties%20of%20free-standing%20PMMA%E2%80%93MMT%20clay%20composites&rft.jtitle=Journal%20of%20materials%20research&rft.au=Nabirqudri,%20Syed%20Abusale%20Mhamad&rft.date=2014-12-28&rft.volume=29&rft.issue=24&rft.spage=2957&rft.epage=2964&rft.pages=2957-2964&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2014.301&rft_dat=%3Cproquest_cross%3E1651381622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1636528903&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2014_301&rfr_iscdi=true |