Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation
The Gardner equation is one of the most important prototypic models in nonlinear physics. Many scholars pay much attention to the Gardner equation and various nonlinear excitations of the Gardner equation have been found by many methods. However, it is very difficult to find interaction solutions am...
Gespeichert in:
Veröffentlicht in: | Chinese physics letters 2014-07, Vol.31 (7), p.9-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 7 |
container_start_page | 9 |
container_title | Chinese physics letters |
container_volume | 31 |
creator | 余炜沣 楼森岳 俞军 胡瀚玮 |
description | The Gardner equation is one of the most important prototypic models in nonlinear physics. Many scholars pay much attention to the Gardner equation and various nonlinear excitations of the Gardner equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this work, with the help of the Riccati equation, the Gardner equation is solved by the consistent Riccati expansion. Furthermore, we obtain the soliton-cnoidal wave interaction solutions of the Gardner equation. |
doi_str_mv | 10.1088/0256-307X/31/7/070203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651380646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>661695806</cqvip_id><sourcerecordid>1651380646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-1cdac66e44c4b66cb3b620ca7f0533244e1e19cc7ab3b9cd7272a00edb1844703</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWB8_QQiu3Iy9d5JJpkspPgoFBRXdhUzmth2ZJm0yVfz3ztDi6sK53zmLj7ErhFuEshxDXqhMgP4cCxzrMWjIQRyxEWqJmSgkHLPRP3PKzlL6AkAsEUfsZeY7itZ1TfCJV9T9EHn-GtqmGwLraz71oalty18oNqFuHP-w35R4WPBuRfzRxtpT5PfbnR1GLtjJwraJLg_3nL0_3L9Nn7L58-NsejfPnEDRZehq65QiKZ2slHKVqFQOzuoFFELkUhISTpzTtv9MXK1znVsAqisspdQgztnNfncTw3ZHqTPrJjlqW-sp7JJBVaAoQUnVo8UedTGkFGlhNrFZ2_hrEMxg0Ax2zGDHCDTa7A32vetDbxX8ctv45X9RKVSTop8XfydQb6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651380646</pqid></control><display><type>article</type><title>Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>余炜沣 楼森岳 俞军 胡瀚玮</creator><creatorcontrib>余炜沣 楼森岳 俞军 胡瀚玮</creatorcontrib><description>The Gardner equation is one of the most important prototypic models in nonlinear physics. Many scholars pay much attention to the Gardner equation and various nonlinear excitations of the Gardner equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this work, with the help of the Riccati equation, the Gardner equation is solved by the consistent Riccati expansion. Furthermore, we obtain the soliton-cnoidal wave interaction solutions of the Gardner equation.</description><identifier>ISSN: 0256-307X</identifier><identifier>EISSN: 1741-3540</identifier><identifier>DOI: 10.1088/0256-307X/31/7/070203</identifier><language>eng</language><subject>Excitation ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Riccati equation ; Riccati方程 ; Solitons ; Wave interaction ; 周期波 ; 孤子 ; 椭圆余弦波 ; 相互作用 ; 非线性激励 ; 非线性激发 ; 非线性物理学</subject><ispartof>Chinese physics letters, 2014-07, Vol.31 (7), p.9-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-1cdac66e44c4b66cb3b620ca7f0533244e1e19cc7ab3b9cd7272a00edb1844703</citedby><cites>FETCH-LOGICAL-c313t-1cdac66e44c4b66cb3b620ca7f0533244e1e19cc7ab3b9cd7272a00edb1844703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84212X/84212X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>余炜沣 楼森岳 俞军 胡瀚玮</creatorcontrib><title>Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation</title><title>Chinese physics letters</title><addtitle>Chinese Physics Letters</addtitle><description>The Gardner equation is one of the most important prototypic models in nonlinear physics. Many scholars pay much attention to the Gardner equation and various nonlinear excitations of the Gardner equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this work, with the help of the Riccati equation, the Gardner equation is solved by the consistent Riccati expansion. Furthermore, we obtain the soliton-cnoidal wave interaction solutions of the Gardner equation.</description><subject>Excitation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Riccati equation</subject><subject>Riccati方程</subject><subject>Solitons</subject><subject>Wave interaction</subject><subject>周期波</subject><subject>孤子</subject><subject>椭圆余弦波</subject><subject>相互作用</subject><subject>非线性激励</subject><subject>非线性激发</subject><subject>非线性物理学</subject><issn>0256-307X</issn><issn>1741-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWB8_QQiu3Iy9d5JJpkspPgoFBRXdhUzmth2ZJm0yVfz3ztDi6sK53zmLj7ErhFuEshxDXqhMgP4cCxzrMWjIQRyxEWqJmSgkHLPRP3PKzlL6AkAsEUfsZeY7itZ1TfCJV9T9EHn-GtqmGwLraz71oalty18oNqFuHP-w35R4WPBuRfzRxtpT5PfbnR1GLtjJwraJLg_3nL0_3L9Nn7L58-NsejfPnEDRZehq65QiKZ2slHKVqFQOzuoFFELkUhISTpzTtv9MXK1znVsAqisspdQgztnNfncTw3ZHqTPrJjlqW-sp7JJBVaAoQUnVo8UedTGkFGlhNrFZ2_hrEMxg0Ax2zGDHCDTa7A32vetDbxX8ctv45X9RKVSTop8XfydQb6Q</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>余炜沣 楼森岳 俞军 胡瀚玮</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140701</creationdate><title>Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation</title><author>余炜沣 楼森岳 俞军 胡瀚玮</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-1cdac66e44c4b66cb3b620ca7f0533244e1e19cc7ab3b9cd7272a00edb1844703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Excitation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Riccati equation</topic><topic>Riccati方程</topic><topic>Solitons</topic><topic>Wave interaction</topic><topic>周期波</topic><topic>孤子</topic><topic>椭圆余弦波</topic><topic>相互作用</topic><topic>非线性激励</topic><topic>非线性激发</topic><topic>非线性物理学</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>余炜沣 楼森岳 俞军 胡瀚玮</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>余炜沣 楼森岳 俞军 胡瀚玮</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation</atitle><jtitle>Chinese physics letters</jtitle><addtitle>Chinese Physics Letters</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>31</volume><issue>7</issue><spage>9</spage><epage>11</epage><pages>9-11</pages><issn>0256-307X</issn><eissn>1741-3540</eissn><abstract>The Gardner equation is one of the most important prototypic models in nonlinear physics. Many scholars pay much attention to the Gardner equation and various nonlinear excitations of the Gardner equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this work, with the help of the Riccati equation, the Gardner equation is solved by the consistent Riccati expansion. Furthermore, we obtain the soliton-cnoidal wave interaction solutions of the Gardner equation.</abstract><doi>10.1088/0256-307X/31/7/070203</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-307X |
ispartof | Chinese physics letters, 2014-07, Vol.31 (7), p.9-11 |
issn | 0256-307X 1741-3540 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651380646 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Excitation Mathematical analysis Mathematical models Nonlinearity Riccati equation Riccati方程 Solitons Wave interaction 周期波 孤子 椭圆余弦波 相互作用 非线性激励 非线性激发 非线性物理学 |
title | Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20between%20Solitons%20and%20Cnoidal%20Periodic%20Waves%20of%20the%20Gardner%20Equation&rft.jtitle=Chinese%20physics%20letters&rft.au=%E4%BD%99%E7%82%9C%E6%B2%A3%20%E6%A5%BC%E6%A3%AE%E5%B2%B3%20%E4%BF%9E%E5%86%9B%20%E8%83%A1%E7%80%9A%E7%8E%AE&rft.date=2014-07-01&rft.volume=31&rft.issue=7&rft.spage=9&rft.epage=11&rft.pages=9-11&rft.issn=0256-307X&rft.eissn=1741-3540&rft_id=info:doi/10.1088/0256-307X/31/7/070203&rft_dat=%3Cproquest_cross%3E1651380646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651380646&rft_id=info:pmid/&rft_cqvip_id=661695806&rfr_iscdi=true |