Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation

The Gardner equation is one of the most important prototypic models in nonlinear physics. Many scholars pay much attention to the Gardner equation and various nonlinear excitations of the Gardner equation have been found by many methods. However, it is very difficult to find interaction solutions am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics letters 2014-07, Vol.31 (7), p.9-11
1. Verfasser: 余炜沣 楼森岳 俞军 胡瀚玮
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 7
container_start_page 9
container_title Chinese physics letters
container_volume 31
creator 余炜沣 楼森岳 俞军 胡瀚玮
description The Gardner equation is one of the most important prototypic models in nonlinear physics. Many scholars pay much attention to the Gardner equation and various nonlinear excitations of the Gardner equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this work, with the help of the Riccati equation, the Gardner equation is solved by the consistent Riccati expansion. Furthermore, we obtain the soliton-cnoidal wave interaction solutions of the Gardner equation.
doi_str_mv 10.1088/0256-307X/31/7/070203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651380646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>661695806</cqvip_id><sourcerecordid>1651380646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-1cdac66e44c4b66cb3b620ca7f0533244e1e19cc7ab3b9cd7272a00edb1844703</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWB8_QQiu3Iy9d5JJpkspPgoFBRXdhUzmth2ZJm0yVfz3ztDi6sK53zmLj7ErhFuEshxDXqhMgP4cCxzrMWjIQRyxEWqJmSgkHLPRP3PKzlL6AkAsEUfsZeY7itZ1TfCJV9T9EHn-GtqmGwLraz71oalty18oNqFuHP-w35R4WPBuRfzRxtpT5PfbnR1GLtjJwraJLg_3nL0_3L9Nn7L58-NsejfPnEDRZehq65QiKZ2slHKVqFQOzuoFFELkUhISTpzTtv9MXK1znVsAqisspdQgztnNfncTw3ZHqTPrJjlqW-sp7JJBVaAoQUnVo8UedTGkFGlhNrFZ2_hrEMxg0Ax2zGDHCDTa7A32vetDbxX8ctv45X9RKVSTop8XfydQb6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651380646</pqid></control><display><type>article</type><title>Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>余炜沣 楼森岳 俞军 胡瀚玮</creator><creatorcontrib>余炜沣 楼森岳 俞军 胡瀚玮</creatorcontrib><description>The Gardner equation is one of the most important prototypic models in nonlinear physics. Many scholars pay much attention to the Gardner equation and various nonlinear excitations of the Gardner equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this work, with the help of the Riccati equation, the Gardner equation is solved by the consistent Riccati expansion. Furthermore, we obtain the soliton-cnoidal wave interaction solutions of the Gardner equation.</description><identifier>ISSN: 0256-307X</identifier><identifier>EISSN: 1741-3540</identifier><identifier>DOI: 10.1088/0256-307X/31/7/070203</identifier><language>eng</language><subject>Excitation ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Riccati equation ; Riccati方程 ; Solitons ; Wave interaction ; 周期波 ; 孤子 ; 椭圆余弦波 ; 相互作用 ; 非线性激励 ; 非线性激发 ; 非线性物理学</subject><ispartof>Chinese physics letters, 2014-07, Vol.31 (7), p.9-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-1cdac66e44c4b66cb3b620ca7f0533244e1e19cc7ab3b9cd7272a00edb1844703</citedby><cites>FETCH-LOGICAL-c313t-1cdac66e44c4b66cb3b620ca7f0533244e1e19cc7ab3b9cd7272a00edb1844703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84212X/84212X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>余炜沣 楼森岳 俞军 胡瀚玮</creatorcontrib><title>Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation</title><title>Chinese physics letters</title><addtitle>Chinese Physics Letters</addtitle><description>The Gardner equation is one of the most important prototypic models in nonlinear physics. Many scholars pay much attention to the Gardner equation and various nonlinear excitations of the Gardner equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this work, with the help of the Riccati equation, the Gardner equation is solved by the consistent Riccati expansion. Furthermore, we obtain the soliton-cnoidal wave interaction solutions of the Gardner equation.</description><subject>Excitation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Riccati equation</subject><subject>Riccati方程</subject><subject>Solitons</subject><subject>Wave interaction</subject><subject>周期波</subject><subject>孤子</subject><subject>椭圆余弦波</subject><subject>相互作用</subject><subject>非线性激励</subject><subject>非线性激发</subject><subject>非线性物理学</subject><issn>0256-307X</issn><issn>1741-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWB8_QQiu3Iy9d5JJpkspPgoFBRXdhUzmth2ZJm0yVfz3ztDi6sK53zmLj7ErhFuEshxDXqhMgP4cCxzrMWjIQRyxEWqJmSgkHLPRP3PKzlL6AkAsEUfsZeY7itZ1TfCJV9T9EHn-GtqmGwLraz71oalty18oNqFuHP-w35R4WPBuRfzRxtpT5PfbnR1GLtjJwraJLg_3nL0_3L9Nn7L58-NsejfPnEDRZehq65QiKZ2slHKVqFQOzuoFFELkUhISTpzTtv9MXK1znVsAqisspdQgztnNfncTw3ZHqTPrJjlqW-sp7JJBVaAoQUnVo8UedTGkFGlhNrFZ2_hrEMxg0Ax2zGDHCDTa7A32vetDbxX8ctv45X9RKVSTop8XfydQb6Q</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>余炜沣 楼森岳 俞军 胡瀚玮</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140701</creationdate><title>Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation</title><author>余炜沣 楼森岳 俞军 胡瀚玮</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-1cdac66e44c4b66cb3b620ca7f0533244e1e19cc7ab3b9cd7272a00edb1844703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Excitation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Riccati equation</topic><topic>Riccati方程</topic><topic>Solitons</topic><topic>Wave interaction</topic><topic>周期波</topic><topic>孤子</topic><topic>椭圆余弦波</topic><topic>相互作用</topic><topic>非线性激励</topic><topic>非线性激发</topic><topic>非线性物理学</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>余炜沣 楼森岳 俞军 胡瀚玮</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>余炜沣 楼森岳 俞军 胡瀚玮</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation</atitle><jtitle>Chinese physics letters</jtitle><addtitle>Chinese Physics Letters</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>31</volume><issue>7</issue><spage>9</spage><epage>11</epage><pages>9-11</pages><issn>0256-307X</issn><eissn>1741-3540</eissn><abstract>The Gardner equation is one of the most important prototypic models in nonlinear physics. Many scholars pay much attention to the Gardner equation and various nonlinear excitations of the Gardner equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this work, with the help of the Riccati equation, the Gardner equation is solved by the consistent Riccati expansion. Furthermore, we obtain the soliton-cnoidal wave interaction solutions of the Gardner equation.</abstract><doi>10.1088/0256-307X/31/7/070203</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-307X
ispartof Chinese physics letters, 2014-07, Vol.31 (7), p.9-11
issn 0256-307X
1741-3540
language eng
recordid cdi_proquest_miscellaneous_1651380646
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Excitation
Mathematical analysis
Mathematical models
Nonlinearity
Riccati equation
Riccati方程
Solitons
Wave interaction
周期波
孤子
椭圆余弦波
相互作用
非线性激励
非线性激发
非线性物理学
title Interactions between Solitons and Cnoidal Periodic Waves of the Gardner Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20between%20Solitons%20and%20Cnoidal%20Periodic%20Waves%20of%20the%20Gardner%20Equation&rft.jtitle=Chinese%20physics%20letters&rft.au=%E4%BD%99%E7%82%9C%E6%B2%A3%20%E6%A5%BC%E6%A3%AE%E5%B2%B3%20%E4%BF%9E%E5%86%9B%20%E8%83%A1%E7%80%9A%E7%8E%AE&rft.date=2014-07-01&rft.volume=31&rft.issue=7&rft.spage=9&rft.epage=11&rft.pages=9-11&rft.issn=0256-307X&rft.eissn=1741-3540&rft_id=info:doi/10.1088/0256-307X/31/7/070203&rft_dat=%3Cproquest_cross%3E1651380646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651380646&rft_id=info:pmid/&rft_cqvip_id=661695806&rfr_iscdi=true