On the metric dimension of circulant and Harary graphs
A metric generator is a set W of vertices of a graph G(V,E) such that for every pair of vertices u,v of G, there exists a vertex w∈W with the condition that the length of a shortest path from u to w is different from the length of a shortest path from v to w. In this case the vertex w is said to res...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2014-12, Vol.248, p.47-54 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | |
container_start_page | 47 |
container_title | Applied mathematics and computation |
container_volume | 248 |
creator | Grigorious, Cyriac Manuel, Paul Miller, Mirka Rajan, Bharati Stephen, Sudeep |
description | A metric generator is a set W of vertices of a graph G(V,E) such that for every pair of vertices u,v of G, there exists a vertex w∈W with the condition that the length of a shortest path from u to w is different from the length of a shortest path from v to w. In this case the vertex w is said to resolve or distinguish the vertices u and v. The minimum cardinality of a metric generator for G is called the metric dimension. The metric dimension problem is to find a minimum metric generator in a graph G. In this paper, we make a significant advance on the metric dimension problem for circulant graphs C(n,±{1,2,…,j}),1⩽j⩽⌊n/2⌋,n⩾3, and for Harary graphs. |
doi_str_mv | 10.1016/j.amc.2014.09.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651380273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314012703</els_id><sourcerecordid>1651380273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-dd94af02a3a2df59a2d217c48888abbda3a9e54113df8ea44b8bce2139ac4463</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFuOXnad2WT_BE9StBUKvfQessmsTenu1mQr-O1NqWfnMAPDe8ObH2OPCDkCVs_73PQ2LwBlDioHWV6xGTa1yMpKqms2A1BVJgDELbuLcQ8AdYVyxqrNwKcd8Z6m4C13vqch-nHgY8etD_Z0MMPEzeD4ygQTfvhnMMddvGc3nTlEevibc7Z9f9suVtl6s_xYvK4zKwRMmXNKmg4KI0zhulKlXmBtZZPKtK1Le0WlRBSua8hI2TatpQKFMlbKSszZ0-XsMYxfJ4qT7n20dEihaDxFjVWJooGiFkmKF6kNY4yBOn0Mvk-JNYI-I9J7nRDpMyINSidEyfNy8VB64dtT0NF6Giw5H8hO2o3-H_cvpiduKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651380273</pqid></control><display><type>article</type><title>On the metric dimension of circulant and Harary graphs</title><source>Elsevier ScienceDirect Journals</source><creator>Grigorious, Cyriac ; Manuel, Paul ; Miller, Mirka ; Rajan, Bharati ; Stephen, Sudeep</creator><creatorcontrib>Grigorious, Cyriac ; Manuel, Paul ; Miller, Mirka ; Rajan, Bharati ; Stephen, Sudeep</creatorcontrib><description>A metric generator is a set W of vertices of a graph G(V,E) such that for every pair of vertices u,v of G, there exists a vertex w∈W with the condition that the length of a shortest path from u to w is different from the length of a shortest path from v to w. In this case the vertex w is said to resolve or distinguish the vertices u and v. The minimum cardinality of a metric generator for G is called the metric dimension. The metric dimension problem is to find a minimum metric generator in a graph G. In this paper, we make a significant advance on the metric dimension problem for circulant graphs C(n,±{1,2,…,j}),1⩽j⩽⌊n/2⌋,n⩾3, and for Harary graphs.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.09.045</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Circulant graphs ; Computation ; Generators ; Graphs ; Harary graphs ; Mathematical models ; Metric basis ; Metric dimension ; Shortest-path problems</subject><ispartof>Applied mathematics and computation, 2014-12, Vol.248, p.47-54</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-dd94af02a3a2df59a2d217c48888abbda3a9e54113df8ea44b8bce2139ac4463</citedby><cites>FETCH-LOGICAL-c330t-dd94af02a3a2df59a2d217c48888abbda3a9e54113df8ea44b8bce2139ac4463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2014.09.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Grigorious, Cyriac</creatorcontrib><creatorcontrib>Manuel, Paul</creatorcontrib><creatorcontrib>Miller, Mirka</creatorcontrib><creatorcontrib>Rajan, Bharati</creatorcontrib><creatorcontrib>Stephen, Sudeep</creatorcontrib><title>On the metric dimension of circulant and Harary graphs</title><title>Applied mathematics and computation</title><description>A metric generator is a set W of vertices of a graph G(V,E) such that for every pair of vertices u,v of G, there exists a vertex w∈W with the condition that the length of a shortest path from u to w is different from the length of a shortest path from v to w. In this case the vertex w is said to resolve or distinguish the vertices u and v. The minimum cardinality of a metric generator for G is called the metric dimension. The metric dimension problem is to find a minimum metric generator in a graph G. In this paper, we make a significant advance on the metric dimension problem for circulant graphs C(n,±{1,2,…,j}),1⩽j⩽⌊n/2⌋,n⩾3, and for Harary graphs.</description><subject>Circulant graphs</subject><subject>Computation</subject><subject>Generators</subject><subject>Graphs</subject><subject>Harary graphs</subject><subject>Mathematical models</subject><subject>Metric basis</subject><subject>Metric dimension</subject><subject>Shortest-path problems</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFuOXnad2WT_BE9StBUKvfQessmsTenu1mQr-O1NqWfnMAPDe8ObH2OPCDkCVs_73PQ2LwBlDioHWV6xGTa1yMpKqms2A1BVJgDELbuLcQ8AdYVyxqrNwKcd8Z6m4C13vqch-nHgY8etD_Z0MMPEzeD4ygQTfvhnMMddvGc3nTlEevibc7Z9f9suVtl6s_xYvK4zKwRMmXNKmg4KI0zhulKlXmBtZZPKtK1Le0WlRBSua8hI2TatpQKFMlbKSszZ0-XsMYxfJ4qT7n20dEihaDxFjVWJooGiFkmKF6kNY4yBOn0Mvk-JNYI-I9J7nRDpMyINSidEyfNy8VB64dtT0NF6Giw5H8hO2o3-H_cvpiduKg</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Grigorious, Cyriac</creator><creator>Manuel, Paul</creator><creator>Miller, Mirka</creator><creator>Rajan, Bharati</creator><creator>Stephen, Sudeep</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>On the metric dimension of circulant and Harary graphs</title><author>Grigorious, Cyriac ; Manuel, Paul ; Miller, Mirka ; Rajan, Bharati ; Stephen, Sudeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-dd94af02a3a2df59a2d217c48888abbda3a9e54113df8ea44b8bce2139ac4463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Circulant graphs</topic><topic>Computation</topic><topic>Generators</topic><topic>Graphs</topic><topic>Harary graphs</topic><topic>Mathematical models</topic><topic>Metric basis</topic><topic>Metric dimension</topic><topic>Shortest-path problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigorious, Cyriac</creatorcontrib><creatorcontrib>Manuel, Paul</creatorcontrib><creatorcontrib>Miller, Mirka</creatorcontrib><creatorcontrib>Rajan, Bharati</creatorcontrib><creatorcontrib>Stephen, Sudeep</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigorious, Cyriac</au><au>Manuel, Paul</au><au>Miller, Mirka</au><au>Rajan, Bharati</au><au>Stephen, Sudeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the metric dimension of circulant and Harary graphs</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>248</volume><spage>47</spage><epage>54</epage><pages>47-54</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>A metric generator is a set W of vertices of a graph G(V,E) such that for every pair of vertices u,v of G, there exists a vertex w∈W with the condition that the length of a shortest path from u to w is different from the length of a shortest path from v to w. In this case the vertex w is said to resolve or distinguish the vertices u and v. The minimum cardinality of a metric generator for G is called the metric dimension. The metric dimension problem is to find a minimum metric generator in a graph G. In this paper, we make a significant advance on the metric dimension problem for circulant graphs C(n,±{1,2,…,j}),1⩽j⩽⌊n/2⌋,n⩾3, and for Harary graphs.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.09.045</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2014-12, Vol.248, p.47-54 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651380273 |
source | Elsevier ScienceDirect Journals |
subjects | Circulant graphs Computation Generators Graphs Harary graphs Mathematical models Metric basis Metric dimension Shortest-path problems |
title | On the metric dimension of circulant and Harary graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20metric%20dimension%20of%20circulant%20and%20Harary%20graphs&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Grigorious,%20Cyriac&rft.date=2014-12-01&rft.volume=248&rft.spage=47&rft.epage=54&rft.pages=47-54&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.09.045&rft_dat=%3Cproquest_cross%3E1651380273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651380273&rft_id=info:pmid/&rft_els_id=S0096300314012703&rfr_iscdi=true |