Simulation of Enriched Air-Steam Biomass Gasification in a Bubbling Fluidized Bed Gasifier

A model was developed for the enriched air-steam biomass gasification in a bubbling fluidized bed (BFB) gasifier using Aspen Plus. Restricted equilibrium method was used to eliminate the deviation caused by the diffusion effect of gas-particle. The model has been divided into three stages (drying an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-11, Vol.699 (Sustainable Energy and Development, Advanced Materials), p.510-515
Hauptverfasser: Huang, Ya Ji, Jin, Bao Sheng, Niu, Miao Miao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A model was developed for the enriched air-steam biomass gasification in a bubbling fluidized bed (BFB) gasifier using Aspen Plus. Restricted equilibrium method was used to eliminate the deviation caused by the diffusion effect of gas-particle. The model has been divided into three stages (drying and pyrolysis, partial combustion and gasification) for predicting the gasifier performance. Simulation results for gas composition, carbon conversion and cold gas efficiency versus oxygen percentage and steam to biomass ratio (S/B) were compared with the experimental results. Higher oxygen percentage improves the gasification process, increases the production of H2 and CO and results in better gasification efficiency. With increasing oxygen percentage, the production of CO2 and CH4 show decreasing trends. Steam injection enhances the H2 and CO2 production but decreases CO and CH4 production. Carbon conversion presents a slight decrease trend over the S/B range, while cold gas efficiency is first constant and then decreased.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.699.510