A new method based on generalized Taylor expansion for computing a series solution of the linear systems

In this paper, based on the generalized Taylor expansion and using the iteration matrix G of the iterative methods, we introduce a new method for computing a series solution of the linear systems. This method can be used to accelerate the convergence of the basic iterative methods. In addition, we s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-12, Vol.248, p.602-609
Hauptverfasser: Toutounian, F., Nasabzadeh, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 609
container_issue
container_start_page 602
container_title Applied mathematics and computation
container_volume 248
creator Toutounian, F.
Nasabzadeh, H.
description In this paper, based on the generalized Taylor expansion and using the iteration matrix G of the iterative methods, we introduce a new method for computing a series solution of the linear systems. This method can be used to accelerate the convergence of the basic iterative methods. In addition, we show that, by applying the new method to a divergent iterative scheme, it is possible to construct a convergent series solution and to find the convergence intervals of control parameter for special cases. Numerical experiments are given to show the efficiency of the new method.
doi_str_mv 10.1016/j.amc.2014.10.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651372461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630031401368X</els_id><sourcerecordid>1651372461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-871db651e168c91ac6f23daca2bb0cec6166f7abae1255fa18afcb882e3b3d8d3</originalsourceid><addsrcrecordid>eNp9UDtPwzAQthBIlMcPYPPIkuKLWycVU4V4SZVYymxdnEvrKomLLwXKr8dVmZlO31O6T4gbUGNQYO42Y-zcOFcwSXislD4RIygLnU3NZHYqRkrNTKYTfy4umDdKqcLAZCTWc9nTl-xoWIdaVshUy9DLFfUUsfU_CS5x34Yo6XuLPfskNgm50G13g-9XEiVT9MSSQ5uYpIdGDmuSre8Jo-Q9D9TxlThrsGW6_ruX4v3pcfnwki3enl8f5ovMaa2GrCygrswUCEzpZoDONLmu0WFeVcqRM2BMU2CFBPl02iCU2LiqLHPSla7LWl-K22PvNoaPHfFgO8-O2hZ7Cju2kMp1kU8MJCscrS4G5kiN3UbfYdxbUPawqt3YtKo9rHqg0nopc3_MUPrh01O07Dz1jmofyQ22Dv6f9C_89oHi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651372461</pqid></control><display><type>article</type><title>A new method based on generalized Taylor expansion for computing a series solution of the linear systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Toutounian, F. ; Nasabzadeh, H.</creator><creatorcontrib>Toutounian, F. ; Nasabzadeh, H.</creatorcontrib><description>In this paper, based on the generalized Taylor expansion and using the iteration matrix G of the iterative methods, we introduce a new method for computing a series solution of the linear systems. This method can be used to accelerate the convergence of the basic iterative methods. In addition, we show that, by applying the new method to a divergent iterative scheme, it is possible to construct a convergent series solution and to find the convergence intervals of control parameter for special cases. Numerical experiments are given to show the efficiency of the new method.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.10.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Basic iterative method ; Computation ; Construction ; Convergence ; Generalized Taylor expansion ; Intervals ; Iterative methods ; Linear system ; Linear systems ; Mathematical analysis ; Mathematical models ; Spectral radius</subject><ispartof>Applied mathematics and computation, 2014-12, Vol.248, p.602-609</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-871db651e168c91ac6f23daca2bb0cec6166f7abae1255fa18afcb882e3b3d8d3</citedby><cites>FETCH-LOGICAL-c330t-871db651e168c91ac6f23daca2bb0cec6166f7abae1255fa18afcb882e3b3d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2014.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Toutounian, F.</creatorcontrib><creatorcontrib>Nasabzadeh, H.</creatorcontrib><title>A new method based on generalized Taylor expansion for computing a series solution of the linear systems</title><title>Applied mathematics and computation</title><description>In this paper, based on the generalized Taylor expansion and using the iteration matrix G of the iterative methods, we introduce a new method for computing a series solution of the linear systems. This method can be used to accelerate the convergence of the basic iterative methods. In addition, we show that, by applying the new method to a divergent iterative scheme, it is possible to construct a convergent series solution and to find the convergence intervals of control parameter for special cases. Numerical experiments are given to show the efficiency of the new method.</description><subject>Basic iterative method</subject><subject>Computation</subject><subject>Construction</subject><subject>Convergence</subject><subject>Generalized Taylor expansion</subject><subject>Intervals</subject><subject>Iterative methods</subject><subject>Linear system</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Spectral radius</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UDtPwzAQthBIlMcPYPPIkuKLWycVU4V4SZVYymxdnEvrKomLLwXKr8dVmZlO31O6T4gbUGNQYO42Y-zcOFcwSXislD4RIygLnU3NZHYqRkrNTKYTfy4umDdKqcLAZCTWc9nTl-xoWIdaVshUy9DLFfUUsfU_CS5x34Yo6XuLPfskNgm50G13g-9XEiVT9MSSQ5uYpIdGDmuSre8Jo-Q9D9TxlThrsGW6_ruX4v3pcfnwki3enl8f5ovMaa2GrCygrswUCEzpZoDONLmu0WFeVcqRM2BMU2CFBPl02iCU2LiqLHPSla7LWl-K22PvNoaPHfFgO8-O2hZ7Cju2kMp1kU8MJCscrS4G5kiN3UbfYdxbUPawqt3YtKo9rHqg0nopc3_MUPrh01O07Dz1jmofyQ22Dv6f9C_89oHi</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Toutounian, F.</creator><creator>Nasabzadeh, H.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>A new method based on generalized Taylor expansion for computing a series solution of the linear systems</title><author>Toutounian, F. ; Nasabzadeh, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-871db651e168c91ac6f23daca2bb0cec6166f7abae1255fa18afcb882e3b3d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Basic iterative method</topic><topic>Computation</topic><topic>Construction</topic><topic>Convergence</topic><topic>Generalized Taylor expansion</topic><topic>Intervals</topic><topic>Iterative methods</topic><topic>Linear system</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Spectral radius</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toutounian, F.</creatorcontrib><creatorcontrib>Nasabzadeh, H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toutounian, F.</au><au>Nasabzadeh, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method based on generalized Taylor expansion for computing a series solution of the linear systems</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>248</volume><spage>602</spage><epage>609</epage><pages>602-609</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this paper, based on the generalized Taylor expansion and using the iteration matrix G of the iterative methods, we introduce a new method for computing a series solution of the linear systems. This method can be used to accelerate the convergence of the basic iterative methods. In addition, we show that, by applying the new method to a divergent iterative scheme, it is possible to construct a convergent series solution and to find the convergence intervals of control parameter for special cases. Numerical experiments are given to show the efficiency of the new method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.10.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-12, Vol.248, p.602-609
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1651372461
source Access via ScienceDirect (Elsevier)
subjects Basic iterative method
Computation
Construction
Convergence
Generalized Taylor expansion
Intervals
Iterative methods
Linear system
Linear systems
Mathematical analysis
Mathematical models
Spectral radius
title A new method based on generalized Taylor expansion for computing a series solution of the linear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T08%3A47%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20based%20on%20generalized%20Taylor%20expansion%20for%20computing%20a%20series%20solution%20of%20the%20linear%20systems&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Toutounian,%20F.&rft.date=2014-12-01&rft.volume=248&rft.spage=602&rft.epage=609&rft.pages=602-609&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.10.003&rft_dat=%3Cproquest_cross%3E1651372461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651372461&rft_id=info:pmid/&rft_els_id=S009630031401368X&rfr_iscdi=true