Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase
Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure α-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged r...
Gespeichert in:
Veröffentlicht in: | Protein engineering 1992-12, Vol.5 (8), p.769-774 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 774 |
---|---|
container_issue | 8 |
container_start_page | 769 |
container_title | Protein engineering |
container_volume | 5 |
creator | Kallwass, Helmut K.W. Surewicz, Witold K. Parris, Wendy Macfarlane, Emma L.A. Luyten, Marcel A. Kay, Cyril M. Gold, Marvin Jones, J.Bryan |
description | Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure α-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged reaction times, to increase productivity and to extend then applicability to poor substrates. Here, two examples are reported of significant thermostabilizations, induced by sitedirected mutagenesis, of an already thermostable protein, the L-lactate dehydrogenase (EC 1.1.1.27, 35 kDa per monomer subunit) from Bacillus stearothermophilus. Thermal inactivation of this enzyme is accompanied by irreversible unfolding of the native protein structure. The replacement of Argl71 by Tyr stabilizes the enzyme against thermal inactivation and unfolding. This stabilizing effect appears to be based on improved interactions between the subunits in the core of the active dimeric or tetrameric forms of the enzyme. The thermal stability of L-lactate dehydrogenase variants with an active site Arg residue, either in the 171 (wild-type) or in the 102 position, is further increased by sulfate ions. The two stabilizing effects are additive, as found for the Argl71Tyr/ Gln1O2Arg double mutant, for which the stability of the protein in 100 mM sulfate solution reaches that of L-lactate dehydrogenases from extreme thermophiles. All mutant proteins retain significant catalytic activity, both in the presence and absence of stnhilfoing salts, and are viable catalysts in preparative scale reactions. |
doi_str_mv | 10.1093/protein/5.8.769 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16490548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16490548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-d06501d37a82dbb33515fd58122e0c99926736c9cc432d424f31a2b49ecd26c43</originalsourceid><addsrcrecordid>eNpFkM1vEzEQxS1EVUrhzAnJB9TbJv7e9RG1hSJF4lCQKi7WrO1tDLveYHul5r_HUaJw8vi9N0-aH0IfKFlRovl6l-biQ1zLVbdqlX6FrmgraEMoF6_PM1Nv0NucfxPCVEvpJbqkrGuVVFdofAzxefQYphBnDDY4nJc-l1CWEuaYsYWIhyWVrU84RJs8ZI_rD-cCfRhD2eN5wHCQ0jTvtlWyeNOMYAsUj53f7l2an32se-_QxQBj9u9P7zX6-eX-x-1Ds_n-9dvt501juSalcURJQh1voWOu7zmXVA5OdpQxT6zWul7BldXWCs6cYGLgFFgvtLeOqSpeo5tjb6Xzd_G5mClk68cRop-XbKgSmkjR1eD6GLRpzjn5wexSmCDtDSXmwNec-BppOlP51o2Pp-qln7z7nz8Crf6nkw_ZwjgkiDbkc0zIrmX0UNMcYyEX_3K2If0x9bZWmoenX0bdPSqpKTNP_B-QUZU1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16490548</pqid></control><display><type>article</type><title>Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase</title><source>MEDLINE</source><source>Oxford University Press Journals Digital Archive Legacy</source><source>Alma/SFX Local Collection</source><creator>Kallwass, Helmut K.W. ; Surewicz, Witold K. ; Parris, Wendy ; Macfarlane, Emma L.A. ; Luyten, Marcel A. ; Kay, Cyril M. ; Gold, Marvin ; Jones, J.Bryan</creator><creatorcontrib>Kallwass, Helmut K.W. ; Surewicz, Witold K. ; Parris, Wendy ; Macfarlane, Emma L.A. ; Luyten, Marcel A. ; Kay, Cyril M. ; Gold, Marvin ; Jones, J.Bryan</creatorcontrib><description>Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure α-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged reaction times, to increase productivity and to extend then applicability to poor substrates. Here, two examples are reported of significant thermostabilizations, induced by sitedirected mutagenesis, of an already thermostable protein, the L-lactate dehydrogenase (EC 1.1.1.27, 35 kDa per monomer subunit) from Bacillus stearothermophilus. Thermal inactivation of this enzyme is accompanied by irreversible unfolding of the native protein structure. The replacement of Argl71 by Tyr stabilizes the enzyme against thermal inactivation and unfolding. This stabilizing effect appears to be based on improved interactions between the subunits in the core of the active dimeric or tetrameric forms of the enzyme. The thermal stability of L-lactate dehydrogenase variants with an active site Arg residue, either in the 171 (wild-type) or in the 102 position, is further increased by sulfate ions. The two stabilizing effects are additive, as found for the Argl71Tyr/ Gln1O2Arg double mutant, for which the stability of the protein in 100 mM sulfate solution reaches that of L-lactate dehydrogenases from extreme thermophiles. All mutant proteins retain significant catalytic activity, both in the presence and absence of stnhilfoing salts, and are viable catalysts in preparative scale reactions.</description><identifier>ISSN: 1741-0126</identifier><identifier>ISSN: 0269-2139</identifier><identifier>EISSN: 1741-0134</identifier><identifier>EISSN: 1460-213X</identifier><identifier>DOI: 10.1093/protein/5.8.769</identifier><identifier>PMID: 1287656</identifier><identifier>CODEN: PRENE9</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>active site mutations ; Bacillus stearothermophilus ; Biological and medical sciences ; Biotechnology ; Calorimetry ; Enzyme Stability ; Fundamental and applied biological sciences. Psychology ; Genetic Engineering ; Geobacillus stearothermophilus - enzymology ; Geobacillus stearothermophilus - genetics ; Guanidine ; Guanidines - pharmacology ; Hot Temperature ; Kinetics ; L-Lactate Dehydrogenase - drug effects ; L-Lactate Dehydrogenase - genetics ; L-Lactate Dehydrogenase - metabolism ; lactate dehydrogenase ; Methods. Procedures. Technologies ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Denaturation ; Protein engineering ; protein stabilization ; Recombinant Proteins - metabolism ; sulfate binding ; thermostable enzymes</subject><ispartof>Protein engineering, 1992-12, Vol.5 (8), p.769-774</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-d06501d37a82dbb33515fd58122e0c99926736c9cc432d424f31a2b49ecd26c43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4587219$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1287656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kallwass, Helmut K.W.</creatorcontrib><creatorcontrib>Surewicz, Witold K.</creatorcontrib><creatorcontrib>Parris, Wendy</creatorcontrib><creatorcontrib>Macfarlane, Emma L.A.</creatorcontrib><creatorcontrib>Luyten, Marcel A.</creatorcontrib><creatorcontrib>Kay, Cyril M.</creatorcontrib><creatorcontrib>Gold, Marvin</creatorcontrib><creatorcontrib>Jones, J.Bryan</creatorcontrib><title>Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase</title><title>Protein engineering</title><addtitle>Protein Eng</addtitle><description>Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure α-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged reaction times, to increase productivity and to extend then applicability to poor substrates. Here, two examples are reported of significant thermostabilizations, induced by sitedirected mutagenesis, of an already thermostable protein, the L-lactate dehydrogenase (EC 1.1.1.27, 35 kDa per monomer subunit) from Bacillus stearothermophilus. Thermal inactivation of this enzyme is accompanied by irreversible unfolding of the native protein structure. The replacement of Argl71 by Tyr stabilizes the enzyme against thermal inactivation and unfolding. This stabilizing effect appears to be based on improved interactions between the subunits in the core of the active dimeric or tetrameric forms of the enzyme. The thermal stability of L-lactate dehydrogenase variants with an active site Arg residue, either in the 171 (wild-type) or in the 102 position, is further increased by sulfate ions. The two stabilizing effects are additive, as found for the Argl71Tyr/ Gln1O2Arg double mutant, for which the stability of the protein in 100 mM sulfate solution reaches that of L-lactate dehydrogenases from extreme thermophiles. All mutant proteins retain significant catalytic activity, both in the presence and absence of stnhilfoing salts, and are viable catalysts in preparative scale reactions.</description><subject>active site mutations</subject><subject>Bacillus stearothermophilus</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Calorimetry</subject><subject>Enzyme Stability</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Engineering</subject><subject>Geobacillus stearothermophilus - enzymology</subject><subject>Geobacillus stearothermophilus - genetics</subject><subject>Guanidine</subject><subject>Guanidines - pharmacology</subject><subject>Hot Temperature</subject><subject>Kinetics</subject><subject>L-Lactate Dehydrogenase - drug effects</subject><subject>L-Lactate Dehydrogenase - genetics</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>lactate dehydrogenase</subject><subject>Methods. Procedures. Technologies</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein engineering</subject><subject>protein stabilization</subject><subject>Recombinant Proteins - metabolism</subject><subject>sulfate binding</subject><subject>thermostable enzymes</subject><issn>1741-0126</issn><issn>0269-2139</issn><issn>1741-0134</issn><issn>1460-213X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkM1vEzEQxS1EVUrhzAnJB9TbJv7e9RG1hSJF4lCQKi7WrO1tDLveYHul5r_HUaJw8vi9N0-aH0IfKFlRovl6l-biQ1zLVbdqlX6FrmgraEMoF6_PM1Nv0NucfxPCVEvpJbqkrGuVVFdofAzxefQYphBnDDY4nJc-l1CWEuaYsYWIhyWVrU84RJs8ZI_rD-cCfRhD2eN5wHCQ0jTvtlWyeNOMYAsUj53f7l2an32se-_QxQBj9u9P7zX6-eX-x-1Ds_n-9dvt501juSalcURJQh1voWOu7zmXVA5OdpQxT6zWul7BldXWCs6cYGLgFFgvtLeOqSpeo5tjb6Xzd_G5mClk68cRop-XbKgSmkjR1eD6GLRpzjn5wexSmCDtDSXmwNec-BppOlP51o2Pp-qln7z7nz8Crf6nkw_ZwjgkiDbkc0zIrmX0UNMcYyEX_3K2If0x9bZWmoenX0bdPSqpKTNP_B-QUZU1</recordid><startdate>19921201</startdate><enddate>19921201</enddate><creator>Kallwass, Helmut K.W.</creator><creator>Surewicz, Witold K.</creator><creator>Parris, Wendy</creator><creator>Macfarlane, Emma L.A.</creator><creator>Luyten, Marcel A.</creator><creator>Kay, Cyril M.</creator><creator>Gold, Marvin</creator><creator>Jones, J.Bryan</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19921201</creationdate><title>Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase</title><author>Kallwass, Helmut K.W. ; Surewicz, Witold K. ; Parris, Wendy ; Macfarlane, Emma L.A. ; Luyten, Marcel A. ; Kay, Cyril M. ; Gold, Marvin ; Jones, J.Bryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-d06501d37a82dbb33515fd58122e0c99926736c9cc432d424f31a2b49ecd26c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>active site mutations</topic><topic>Bacillus stearothermophilus</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Calorimetry</topic><topic>Enzyme Stability</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Engineering</topic><topic>Geobacillus stearothermophilus - enzymology</topic><topic>Geobacillus stearothermophilus - genetics</topic><topic>Guanidine</topic><topic>Guanidines - pharmacology</topic><topic>Hot Temperature</topic><topic>Kinetics</topic><topic>L-Lactate Dehydrogenase - drug effects</topic><topic>L-Lactate Dehydrogenase - genetics</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>lactate dehydrogenase</topic><topic>Methods. Procedures. Technologies</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein engineering</topic><topic>protein stabilization</topic><topic>Recombinant Proteins - metabolism</topic><topic>sulfate binding</topic><topic>thermostable enzymes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kallwass, Helmut K.W.</creatorcontrib><creatorcontrib>Surewicz, Witold K.</creatorcontrib><creatorcontrib>Parris, Wendy</creatorcontrib><creatorcontrib>Macfarlane, Emma L.A.</creatorcontrib><creatorcontrib>Luyten, Marcel A.</creatorcontrib><creatorcontrib>Kay, Cyril M.</creatorcontrib><creatorcontrib>Gold, Marvin</creatorcontrib><creatorcontrib>Jones, J.Bryan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Protein engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kallwass, Helmut K.W.</au><au>Surewicz, Witold K.</au><au>Parris, Wendy</au><au>Macfarlane, Emma L.A.</au><au>Luyten, Marcel A.</au><au>Kay, Cyril M.</au><au>Gold, Marvin</au><au>Jones, J.Bryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase</atitle><jtitle>Protein engineering</jtitle><addtitle>Protein Eng</addtitle><date>1992-12-01</date><risdate>1992</risdate><volume>5</volume><issue>8</issue><spage>769</spage><epage>774</epage><pages>769-774</pages><issn>1741-0126</issn><issn>0269-2139</issn><eissn>1741-0134</eissn><eissn>1460-213X</eissn><coden>PRENE9</coden><abstract>Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure α-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged reaction times, to increase productivity and to extend then applicability to poor substrates. Here, two examples are reported of significant thermostabilizations, induced by sitedirected mutagenesis, of an already thermostable protein, the L-lactate dehydrogenase (EC 1.1.1.27, 35 kDa per monomer subunit) from Bacillus stearothermophilus. Thermal inactivation of this enzyme is accompanied by irreversible unfolding of the native protein structure. The replacement of Argl71 by Tyr stabilizes the enzyme against thermal inactivation and unfolding. This stabilizing effect appears to be based on improved interactions between the subunits in the core of the active dimeric or tetrameric forms of the enzyme. The thermal stability of L-lactate dehydrogenase variants with an active site Arg residue, either in the 171 (wild-type) or in the 102 position, is further increased by sulfate ions. The two stabilizing effects are additive, as found for the Argl71Tyr/ Gln1O2Arg double mutant, for which the stability of the protein in 100 mM sulfate solution reaches that of L-lactate dehydrogenases from extreme thermophiles. All mutant proteins retain significant catalytic activity, both in the presence and absence of stnhilfoing salts, and are viable catalysts in preparative scale reactions.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>1287656</pmid><doi>10.1093/protein/5.8.769</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-0126 |
ispartof | Protein engineering, 1992-12, Vol.5 (8), p.769-774 |
issn | 1741-0126 0269-2139 1741-0134 1460-213X |
language | eng |
recordid | cdi_proquest_miscellaneous_16490548 |
source | MEDLINE; Oxford University Press Journals Digital Archive Legacy; Alma/SFX Local Collection |
subjects | active site mutations Bacillus stearothermophilus Biological and medical sciences Biotechnology Calorimetry Enzyme Stability Fundamental and applied biological sciences. Psychology Genetic Engineering Geobacillus stearothermophilus - enzymology Geobacillus stearothermophilus - genetics Guanidine Guanidines - pharmacology Hot Temperature Kinetics L-Lactate Dehydrogenase - drug effects L-Lactate Dehydrogenase - genetics L-Lactate Dehydrogenase - metabolism lactate dehydrogenase Methods. Procedures. Technologies Mutagenesis, Site-Directed Protein Conformation Protein Denaturation Protein engineering protein stabilization Recombinant Proteins - metabolism sulfate binding thermostable enzymes |
title | Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20amino%20acid%20substitutions%20can%20further%20increase%20the%20stability%20of%20a%20thermophilic%20L-lactate%20dehydrogenase&rft.jtitle=Protein%20engineering&rft.au=Kallwass,%20Helmut%20K.W.&rft.date=1992-12-01&rft.volume=5&rft.issue=8&rft.spage=769&rft.epage=774&rft.pages=769-774&rft.issn=1741-0126&rft.eissn=1741-0134&rft.coden=PRENE9&rft_id=info:doi/10.1093/protein/5.8.769&rft_dat=%3Cproquest_cross%3E16490548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16490548&rft_id=info:pmid/1287656&rfr_iscdi=true |