Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase

Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure α-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein engineering 1992-12, Vol.5 (8), p.769-774
Hauptverfasser: Kallwass, Helmut K.W., Surewicz, Witold K., Parris, Wendy, Macfarlane, Emma L.A., Luyten, Marcel A., Kay, Cyril M., Gold, Marvin, Jones, J.Bryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 8
container_start_page 769
container_title Protein engineering
container_volume 5
creator Kallwass, Helmut K.W.
Surewicz, Witold K.
Parris, Wendy
Macfarlane, Emma L.A.
Luyten, Marcel A.
Kay, Cyril M.
Gold, Marvin
Jones, J.Bryan
description Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure α-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged reaction times, to increase productivity and to extend then applicability to poor substrates. Here, two examples are reported of significant thermostabilizations, induced by sitedirected mutagenesis, of an already thermostable protein, the L-lactate dehydrogenase (EC 1.1.1.27, 35 kDa per monomer subunit) from Bacillus stearothermophilus. Thermal inactivation of this enzyme is accompanied by irreversible unfolding of the native protein structure. The replacement of Argl71 by Tyr stabilizes the enzyme against thermal inactivation and unfolding. This stabilizing effect appears to be based on improved interactions between the subunits in the core of the active dimeric or tetrameric forms of the enzyme. The thermal stability of L-lactate dehydrogenase variants with an active site Arg residue, either in the 171 (wild-type) or in the 102 position, is further increased by sulfate ions. The two stabilizing effects are additive, as found for the Argl71Tyr/ Gln1O2Arg double mutant, for which the stability of the protein in 100 mM sulfate solution reaches that of L-lactate dehydrogenases from extreme thermophiles. All mutant proteins retain significant catalytic activity, both in the presence and absence of stnhilfoing salts, and are viable catalysts in preparative scale reactions.
doi_str_mv 10.1093/protein/5.8.769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16490548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16490548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-d06501d37a82dbb33515fd58122e0c99926736c9cc432d424f31a2b49ecd26c43</originalsourceid><addsrcrecordid>eNpFkM1vEzEQxS1EVUrhzAnJB9TbJv7e9RG1hSJF4lCQKi7WrO1tDLveYHul5r_HUaJw8vi9N0-aH0IfKFlRovl6l-biQ1zLVbdqlX6FrmgraEMoF6_PM1Nv0NucfxPCVEvpJbqkrGuVVFdofAzxefQYphBnDDY4nJc-l1CWEuaYsYWIhyWVrU84RJs8ZI_rD-cCfRhD2eN5wHCQ0jTvtlWyeNOMYAsUj53f7l2an32se-_QxQBj9u9P7zX6-eX-x-1Ds_n-9dvt501juSalcURJQh1voWOu7zmXVA5OdpQxT6zWul7BldXWCs6cYGLgFFgvtLeOqSpeo5tjb6Xzd_G5mClk68cRop-XbKgSmkjR1eD6GLRpzjn5wexSmCDtDSXmwNec-BppOlP51o2Pp-qln7z7nz8Crf6nkw_ZwjgkiDbkc0zIrmX0UNMcYyEX_3K2If0x9bZWmoenX0bdPSqpKTNP_B-QUZU1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16490548</pqid></control><display><type>article</type><title>Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase</title><source>MEDLINE</source><source>Oxford University Press Journals Digital Archive Legacy</source><source>Alma/SFX Local Collection</source><creator>Kallwass, Helmut K.W. ; Surewicz, Witold K. ; Parris, Wendy ; Macfarlane, Emma L.A. ; Luyten, Marcel A. ; Kay, Cyril M. ; Gold, Marvin ; Jones, J.Bryan</creator><creatorcontrib>Kallwass, Helmut K.W. ; Surewicz, Witold K. ; Parris, Wendy ; Macfarlane, Emma L.A. ; Luyten, Marcel A. ; Kay, Cyril M. ; Gold, Marvin ; Jones, J.Bryan</creatorcontrib><description>Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure α-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged reaction times, to increase productivity and to extend then applicability to poor substrates. Here, two examples are reported of significant thermostabilizations, induced by sitedirected mutagenesis, of an already thermostable protein, the L-lactate dehydrogenase (EC 1.1.1.27, 35 kDa per monomer subunit) from Bacillus stearothermophilus. Thermal inactivation of this enzyme is accompanied by irreversible unfolding of the native protein structure. The replacement of Argl71 by Tyr stabilizes the enzyme against thermal inactivation and unfolding. This stabilizing effect appears to be based on improved interactions between the subunits in the core of the active dimeric or tetrameric forms of the enzyme. The thermal stability of L-lactate dehydrogenase variants with an active site Arg residue, either in the 171 (wild-type) or in the 102 position, is further increased by sulfate ions. The two stabilizing effects are additive, as found for the Argl71Tyr/ Gln1O2Arg double mutant, for which the stability of the protein in 100 mM sulfate solution reaches that of L-lactate dehydrogenases from extreme thermophiles. All mutant proteins retain significant catalytic activity, both in the presence and absence of stnhilfoing salts, and are viable catalysts in preparative scale reactions.</description><identifier>ISSN: 1741-0126</identifier><identifier>ISSN: 0269-2139</identifier><identifier>EISSN: 1741-0134</identifier><identifier>EISSN: 1460-213X</identifier><identifier>DOI: 10.1093/protein/5.8.769</identifier><identifier>PMID: 1287656</identifier><identifier>CODEN: PRENE9</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>active site mutations ; Bacillus stearothermophilus ; Biological and medical sciences ; Biotechnology ; Calorimetry ; Enzyme Stability ; Fundamental and applied biological sciences. Psychology ; Genetic Engineering ; Geobacillus stearothermophilus - enzymology ; Geobacillus stearothermophilus - genetics ; Guanidine ; Guanidines - pharmacology ; Hot Temperature ; Kinetics ; L-Lactate Dehydrogenase - drug effects ; L-Lactate Dehydrogenase - genetics ; L-Lactate Dehydrogenase - metabolism ; lactate dehydrogenase ; Methods. Procedures. Technologies ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Denaturation ; Protein engineering ; protein stabilization ; Recombinant Proteins - metabolism ; sulfate binding ; thermostable enzymes</subject><ispartof>Protein engineering, 1992-12, Vol.5 (8), p.769-774</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-d06501d37a82dbb33515fd58122e0c99926736c9cc432d424f31a2b49ecd26c43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4587219$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1287656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kallwass, Helmut K.W.</creatorcontrib><creatorcontrib>Surewicz, Witold K.</creatorcontrib><creatorcontrib>Parris, Wendy</creatorcontrib><creatorcontrib>Macfarlane, Emma L.A.</creatorcontrib><creatorcontrib>Luyten, Marcel A.</creatorcontrib><creatorcontrib>Kay, Cyril M.</creatorcontrib><creatorcontrib>Gold, Marvin</creatorcontrib><creatorcontrib>Jones, J.Bryan</creatorcontrib><title>Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase</title><title>Protein engineering</title><addtitle>Protein Eng</addtitle><description>Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure α-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged reaction times, to increase productivity and to extend then applicability to poor substrates. Here, two examples are reported of significant thermostabilizations, induced by sitedirected mutagenesis, of an already thermostable protein, the L-lactate dehydrogenase (EC 1.1.1.27, 35 kDa per monomer subunit) from Bacillus stearothermophilus. Thermal inactivation of this enzyme is accompanied by irreversible unfolding of the native protein structure. The replacement of Argl71 by Tyr stabilizes the enzyme against thermal inactivation and unfolding. This stabilizing effect appears to be based on improved interactions between the subunits in the core of the active dimeric or tetrameric forms of the enzyme. The thermal stability of L-lactate dehydrogenase variants with an active site Arg residue, either in the 171 (wild-type) or in the 102 position, is further increased by sulfate ions. The two stabilizing effects are additive, as found for the Argl71Tyr/ Gln1O2Arg double mutant, for which the stability of the protein in 100 mM sulfate solution reaches that of L-lactate dehydrogenases from extreme thermophiles. All mutant proteins retain significant catalytic activity, both in the presence and absence of stnhilfoing salts, and are viable catalysts in preparative scale reactions.</description><subject>active site mutations</subject><subject>Bacillus stearothermophilus</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Calorimetry</subject><subject>Enzyme Stability</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Engineering</subject><subject>Geobacillus stearothermophilus - enzymology</subject><subject>Geobacillus stearothermophilus - genetics</subject><subject>Guanidine</subject><subject>Guanidines - pharmacology</subject><subject>Hot Temperature</subject><subject>Kinetics</subject><subject>L-Lactate Dehydrogenase - drug effects</subject><subject>L-Lactate Dehydrogenase - genetics</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>lactate dehydrogenase</subject><subject>Methods. Procedures. Technologies</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein engineering</subject><subject>protein stabilization</subject><subject>Recombinant Proteins - metabolism</subject><subject>sulfate binding</subject><subject>thermostable enzymes</subject><issn>1741-0126</issn><issn>0269-2139</issn><issn>1741-0134</issn><issn>1460-213X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkM1vEzEQxS1EVUrhzAnJB9TbJv7e9RG1hSJF4lCQKi7WrO1tDLveYHul5r_HUaJw8vi9N0-aH0IfKFlRovl6l-biQ1zLVbdqlX6FrmgraEMoF6_PM1Nv0NucfxPCVEvpJbqkrGuVVFdofAzxefQYphBnDDY4nJc-l1CWEuaYsYWIhyWVrU84RJs8ZI_rD-cCfRhD2eN5wHCQ0jTvtlWyeNOMYAsUj53f7l2an32se-_QxQBj9u9P7zX6-eX-x-1Ds_n-9dvt501juSalcURJQh1voWOu7zmXVA5OdpQxT6zWul7BldXWCs6cYGLgFFgvtLeOqSpeo5tjb6Xzd_G5mClk68cRop-XbKgSmkjR1eD6GLRpzjn5wexSmCDtDSXmwNec-BppOlP51o2Pp-qln7z7nz8Crf6nkw_ZwjgkiDbkc0zIrmX0UNMcYyEX_3K2If0x9bZWmoenX0bdPSqpKTNP_B-QUZU1</recordid><startdate>19921201</startdate><enddate>19921201</enddate><creator>Kallwass, Helmut K.W.</creator><creator>Surewicz, Witold K.</creator><creator>Parris, Wendy</creator><creator>Macfarlane, Emma L.A.</creator><creator>Luyten, Marcel A.</creator><creator>Kay, Cyril M.</creator><creator>Gold, Marvin</creator><creator>Jones, J.Bryan</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19921201</creationdate><title>Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase</title><author>Kallwass, Helmut K.W. ; Surewicz, Witold K. ; Parris, Wendy ; Macfarlane, Emma L.A. ; Luyten, Marcel A. ; Kay, Cyril M. ; Gold, Marvin ; Jones, J.Bryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-d06501d37a82dbb33515fd58122e0c99926736c9cc432d424f31a2b49ecd26c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>active site mutations</topic><topic>Bacillus stearothermophilus</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Calorimetry</topic><topic>Enzyme Stability</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Engineering</topic><topic>Geobacillus stearothermophilus - enzymology</topic><topic>Geobacillus stearothermophilus - genetics</topic><topic>Guanidine</topic><topic>Guanidines - pharmacology</topic><topic>Hot Temperature</topic><topic>Kinetics</topic><topic>L-Lactate Dehydrogenase - drug effects</topic><topic>L-Lactate Dehydrogenase - genetics</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>lactate dehydrogenase</topic><topic>Methods. Procedures. Technologies</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein engineering</topic><topic>protein stabilization</topic><topic>Recombinant Proteins - metabolism</topic><topic>sulfate binding</topic><topic>thermostable enzymes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kallwass, Helmut K.W.</creatorcontrib><creatorcontrib>Surewicz, Witold K.</creatorcontrib><creatorcontrib>Parris, Wendy</creatorcontrib><creatorcontrib>Macfarlane, Emma L.A.</creatorcontrib><creatorcontrib>Luyten, Marcel A.</creatorcontrib><creatorcontrib>Kay, Cyril M.</creatorcontrib><creatorcontrib>Gold, Marvin</creatorcontrib><creatorcontrib>Jones, J.Bryan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Protein engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kallwass, Helmut K.W.</au><au>Surewicz, Witold K.</au><au>Parris, Wendy</au><au>Macfarlane, Emma L.A.</au><au>Luyten, Marcel A.</au><au>Kay, Cyril M.</au><au>Gold, Marvin</au><au>Jones, J.Bryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase</atitle><jtitle>Protein engineering</jtitle><addtitle>Protein Eng</addtitle><date>1992-12-01</date><risdate>1992</risdate><volume>5</volume><issue>8</issue><spage>769</spage><epage>774</epage><pages>769-774</pages><issn>1741-0126</issn><issn>0269-2139</issn><eissn>1741-0134</eissn><eissn>1460-213X</eissn><coden>PRENE9</coden><abstract>Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure α-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged reaction times, to increase productivity and to extend then applicability to poor substrates. Here, two examples are reported of significant thermostabilizations, induced by sitedirected mutagenesis, of an already thermostable protein, the L-lactate dehydrogenase (EC 1.1.1.27, 35 kDa per monomer subunit) from Bacillus stearothermophilus. Thermal inactivation of this enzyme is accompanied by irreversible unfolding of the native protein structure. The replacement of Argl71 by Tyr stabilizes the enzyme against thermal inactivation and unfolding. This stabilizing effect appears to be based on improved interactions between the subunits in the core of the active dimeric or tetrameric forms of the enzyme. The thermal stability of L-lactate dehydrogenase variants with an active site Arg residue, either in the 171 (wild-type) or in the 102 position, is further increased by sulfate ions. The two stabilizing effects are additive, as found for the Argl71Tyr/ Gln1O2Arg double mutant, for which the stability of the protein in 100 mM sulfate solution reaches that of L-lactate dehydrogenases from extreme thermophiles. All mutant proteins retain significant catalytic activity, both in the presence and absence of stnhilfoing salts, and are viable catalysts in preparative scale reactions.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>1287656</pmid><doi>10.1093/protein/5.8.769</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1741-0126
ispartof Protein engineering, 1992-12, Vol.5 (8), p.769-774
issn 1741-0126
0269-2139
1741-0134
1460-213X
language eng
recordid cdi_proquest_miscellaneous_16490548
source MEDLINE; Oxford University Press Journals Digital Archive Legacy; Alma/SFX Local Collection
subjects active site mutations
Bacillus stearothermophilus
Biological and medical sciences
Biotechnology
Calorimetry
Enzyme Stability
Fundamental and applied biological sciences. Psychology
Genetic Engineering
Geobacillus stearothermophilus - enzymology
Geobacillus stearothermophilus - genetics
Guanidine
Guanidines - pharmacology
Hot Temperature
Kinetics
L-Lactate Dehydrogenase - drug effects
L-Lactate Dehydrogenase - genetics
L-Lactate Dehydrogenase - metabolism
lactate dehydrogenase
Methods. Procedures. Technologies
Mutagenesis, Site-Directed
Protein Conformation
Protein Denaturation
Protein engineering
protein stabilization
Recombinant Proteins - metabolism
sulfate binding
thermostable enzymes
title Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20amino%20acid%20substitutions%20can%20further%20increase%20the%20stability%20of%20a%20thermophilic%20L-lactate%20dehydrogenase&rft.jtitle=Protein%20engineering&rft.au=Kallwass,%20Helmut%20K.W.&rft.date=1992-12-01&rft.volume=5&rft.issue=8&rft.spage=769&rft.epage=774&rft.pages=769-774&rft.issn=1741-0126&rft.eissn=1741-0134&rft.coden=PRENE9&rft_id=info:doi/10.1093/protein/5.8.769&rft_dat=%3Cproquest_cross%3E16490548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16490548&rft_id=info:pmid/1287656&rfr_iscdi=true