Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects
Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2015-01, Vol.24 (1), p.54-69 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 1 |
container_start_page | 54 |
container_title | Molecular ecology |
container_volume | 24 |
creator | Phillipsen, Ivan C. Kirk, Emily H. Bogan, Michael T. Mims, Meryl C. Olden, Julian D. Lytle, David A. |
description | Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal traits—such as dispersal ability, habitat preference and life history—that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape‐based metrics of resistance. We found that the moderate‐disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation‐by‐distance pattern, suggesting migration–drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong‐flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best‐fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale‐dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. |
doi_str_mv | 10.1111/mec.13003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1647021324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3546206751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4903-5015ffed6e682809d53d338b259b5a27009bef03b780b115992bab5e0c5244583</originalsourceid><addsrcrecordid>eNqN0U1vFCEYB3BibOzaevALGBIv9jDtAwzMcNTtm6a2SdXYG2FmnlHqvC0w6n572W7bg4mJXAjhxz_An5CXDA5ZGkc91odMAIgnZMGEkhnX-c1TsgCteMagFLvkeQi3AExwKZ-RXS5z4FzBgozHLkzog-2orVzn4praoaHf0yLaSD2uZuexxyEG2mBE37sBaZdMqO2EWYc_saPfcMDoajrZmMgQqBuSDugjtavZbrbcELCOYZ_stLYL-OJ-3iNfTk8-L8-zi6uz98u3F1mdaxCZBCbbFhuFquQl6EaKRoiy4lJX0vICQFfYgqiKEirGpNa8spVEqCXPc1mKPfJmmzv5cTVjiKZ3ocYu3RzHORim8gJ4-o_8f6gsCsWVSPT1X_R2nP2QHrJRXAjOdJHUwVbVfgzBY2sm73rr14aB2RRmUmHmrrBkX90nzlWPzaN8aCiBoy345Tpc_zvJfDxZPkRm2xMuRPz9eML6H0YVopDm6-WZOf9w-enm-t21ORV_AJpvrjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642332197</pqid></control><display><type>article</type><title>Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Phillipsen, Ivan C. ; Kirk, Emily H. ; Bogan, Michael T. ; Mims, Meryl C. ; Olden, Julian D. ; Lytle, David A.</creator><creatorcontrib>Phillipsen, Ivan C. ; Kirk, Emily H. ; Bogan, Michael T. ; Mims, Meryl C. ; Olden, Julian D. ; Lytle, David A.</creatorcontrib><description>Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal traits—such as dispersal ability, habitat preference and life history—that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape‐based metrics of resistance. We found that the moderate‐disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation‐by‐distance pattern, suggesting migration–drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong‐flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best‐fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale‐dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.13003</identifier><identifier>PMID: 25402260</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Abedus herberti ; Animal Distribution ; Animals ; aquatic insects ; Aquatic life ; Aquatic Organisms - genetics ; Arizona ; Belostomatidae ; Capniidae ; Coleoptera ; Desert Climate ; Dytiscidae ; Ecosystem ; freshwater ; Gene Flow ; Genetic Drift ; Genetics, Population ; Habitats ; Hemiptera ; Insecta - genetics ; Insects ; isolation by distance ; Landscape ecology ; landscape genetics ; Likelihood Functions ; Linear Models ; Linkage Disequilibrium ; Mesocapnia arizonensis ; Models, Genetic ; Plecoptera ; Population genetics</subject><ispartof>Molecular ecology, 2015-01, Vol.24 (1), p.54-69</ispartof><rights>2014 John Wiley & Sons Ltd</rights><rights>2014 John Wiley & Sons Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4903-5015ffed6e682809d53d338b259b5a27009bef03b780b115992bab5e0c5244583</citedby><cites>FETCH-LOGICAL-c4903-5015ffed6e682809d53d338b259b5a27009bef03b780b115992bab5e0c5244583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.13003$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.13003$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25402260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phillipsen, Ivan C.</creatorcontrib><creatorcontrib>Kirk, Emily H.</creatorcontrib><creatorcontrib>Bogan, Michael T.</creatorcontrib><creatorcontrib>Mims, Meryl C.</creatorcontrib><creatorcontrib>Olden, Julian D.</creatorcontrib><creatorcontrib>Lytle, David A.</creatorcontrib><title>Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal traits—such as dispersal ability, habitat preference and life history—that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape‐based metrics of resistance. We found that the moderate‐disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation‐by‐distance pattern, suggesting migration–drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong‐flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best‐fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale‐dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.</description><subject>Abedus herberti</subject><subject>Animal Distribution</subject><subject>Animals</subject><subject>aquatic insects</subject><subject>Aquatic life</subject><subject>Aquatic Organisms - genetics</subject><subject>Arizona</subject><subject>Belostomatidae</subject><subject>Capniidae</subject><subject>Coleoptera</subject><subject>Desert Climate</subject><subject>Dytiscidae</subject><subject>Ecosystem</subject><subject>freshwater</subject><subject>Gene Flow</subject><subject>Genetic Drift</subject><subject>Genetics, Population</subject><subject>Habitats</subject><subject>Hemiptera</subject><subject>Insecta - genetics</subject><subject>Insects</subject><subject>isolation by distance</subject><subject>Landscape ecology</subject><subject>landscape genetics</subject><subject>Likelihood Functions</subject><subject>Linear Models</subject><subject>Linkage Disequilibrium</subject><subject>Mesocapnia arizonensis</subject><subject>Models, Genetic</subject><subject>Plecoptera</subject><subject>Population genetics</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1vFCEYB3BibOzaevALGBIv9jDtAwzMcNTtm6a2SdXYG2FmnlHqvC0w6n572W7bg4mJXAjhxz_An5CXDA5ZGkc91odMAIgnZMGEkhnX-c1TsgCteMagFLvkeQi3AExwKZ-RXS5z4FzBgozHLkzog-2orVzn4praoaHf0yLaSD2uZuexxyEG2mBE37sBaZdMqO2EWYc_saPfcMDoajrZmMgQqBuSDugjtavZbrbcELCOYZ_stLYL-OJ-3iNfTk8-L8-zi6uz98u3F1mdaxCZBCbbFhuFquQl6EaKRoiy4lJX0vICQFfYgqiKEirGpNa8spVEqCXPc1mKPfJmmzv5cTVjiKZ3ocYu3RzHORim8gJ4-o_8f6gsCsWVSPT1X_R2nP2QHrJRXAjOdJHUwVbVfgzBY2sm73rr14aB2RRmUmHmrrBkX90nzlWPzaN8aCiBoy345Tpc_zvJfDxZPkRm2xMuRPz9eML6H0YVopDm6-WZOf9w-enm-t21ORV_AJpvrjA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Phillipsen, Ivan C.</creator><creator>Kirk, Emily H.</creator><creator>Bogan, Michael T.</creator><creator>Mims, Meryl C.</creator><creator>Olden, Julian D.</creator><creator>Lytle, David A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201501</creationdate><title>Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects</title><author>Phillipsen, Ivan C. ; Kirk, Emily H. ; Bogan, Michael T. ; Mims, Meryl C. ; Olden, Julian D. ; Lytle, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4903-5015ffed6e682809d53d338b259b5a27009bef03b780b115992bab5e0c5244583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abedus herberti</topic><topic>Animal Distribution</topic><topic>Animals</topic><topic>aquatic insects</topic><topic>Aquatic life</topic><topic>Aquatic Organisms - genetics</topic><topic>Arizona</topic><topic>Belostomatidae</topic><topic>Capniidae</topic><topic>Coleoptera</topic><topic>Desert Climate</topic><topic>Dytiscidae</topic><topic>Ecosystem</topic><topic>freshwater</topic><topic>Gene Flow</topic><topic>Genetic Drift</topic><topic>Genetics, Population</topic><topic>Habitats</topic><topic>Hemiptera</topic><topic>Insecta - genetics</topic><topic>Insects</topic><topic>isolation by distance</topic><topic>Landscape ecology</topic><topic>landscape genetics</topic><topic>Likelihood Functions</topic><topic>Linear Models</topic><topic>Linkage Disequilibrium</topic><topic>Mesocapnia arizonensis</topic><topic>Models, Genetic</topic><topic>Plecoptera</topic><topic>Population genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillipsen, Ivan C.</creatorcontrib><creatorcontrib>Kirk, Emily H.</creatorcontrib><creatorcontrib>Bogan, Michael T.</creatorcontrib><creatorcontrib>Mims, Meryl C.</creatorcontrib><creatorcontrib>Olden, Julian D.</creatorcontrib><creatorcontrib>Lytle, David A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillipsen, Ivan C.</au><au>Kirk, Emily H.</au><au>Bogan, Michael T.</au><au>Mims, Meryl C.</au><au>Olden, Julian D.</au><au>Lytle, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2015-01</date><risdate>2015</risdate><volume>24</volume><issue>1</issue><spage>54</spage><epage>69</epage><pages>54-69</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal traits—such as dispersal ability, habitat preference and life history—that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape‐based metrics of resistance. We found that the moderate‐disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation‐by‐distance pattern, suggesting migration–drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong‐flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best‐fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale‐dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25402260</pmid><doi>10.1111/mec.13003</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2015-01, Vol.24 (1), p.54-69 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_1647021324 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Abedus herberti Animal Distribution Animals aquatic insects Aquatic life Aquatic Organisms - genetics Arizona Belostomatidae Capniidae Coleoptera Desert Climate Dytiscidae Ecosystem freshwater Gene Flow Genetic Drift Genetics, Population Habitats Hemiptera Insecta - genetics Insects isolation by distance Landscape ecology landscape genetics Likelihood Functions Linear Models Linkage Disequilibrium Mesocapnia arizonensis Models, Genetic Plecoptera Population genetics |
title | Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersal%20ability%20and%20habitat%20requirements%20determine%20landscape-level%20genetic%20patterns%20in%20desert%20aquatic%20insects&rft.jtitle=Molecular%20ecology&rft.au=Phillipsen,%20Ivan%20C.&rft.date=2015-01&rft.volume=24&rft.issue=1&rft.spage=54&rft.epage=69&rft.pages=54-69&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.13003&rft_dat=%3Cproquest_cross%3E3546206751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642332197&rft_id=info:pmid/25402260&rfr_iscdi=true |