Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools
As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footpr...
Gespeichert in:
Veröffentlicht in: | Journal of water reuse and desalination 2014-01, Vol.4 (4), p.238-252 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | 4 |
container_start_page | 238 |
container_title | Journal of water reuse and desalination |
container_volume | 4 |
creator | Cornejo, Pablo K. Santana, Mark V. E. Hokanson, David R. Mihelcic, James R. Zhang, Qiong |
description | As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footprint of these systems from existing literature, recognizes general trends of carbon footprint of water reuse and desalination, and identifies challenges associated with comparing the carbon footprint. Furthermore, limitations, challenges, knowledge gaps, and recommendations associated with carbon footprint estimation tools are presented. Reverse osmosis (RO) technologies were found to have lower CO2 emissions than thermal desalination technologies and the estimated carbon footprint of seawater RO desalination (0.4-6.7 kg CO2eq/m3) is generally larger than brackish water RO desalination (0.4-2.5 kg CO2eq/m3) and water reuse systems (0.1-2.4 kg CO2eq/m3). The large range of reported values is due to variability in location, technologies, life cycle stages, parameters considered, and estimation tools, which were identified as major challenges to making accurate comparisons. Carbon footprint estimation tools could be improved by separating emissions by unit process, direct and indirect emissions, and considering the offset potential of various resource recovery strategies. |
doi_str_mv | 10.2166/wrd.2014.058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1647018732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1647018732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4be8b87b077cd038aba14ece05518079f2598dbb09ef614170d7e0b683a57bf53</originalsourceid><addsrcrecordid>eNpdkMtKAzEUQIMoWGp3fkDAjQun5jWTxJ0UX1Bwo-uQzNypU6dJTaYW_95M68psErjnhsNB6JKSOaNVdbuPzZwRKuakVCdowgRRheaSnOY3Y6SgnOpzNEtpTfIpS80pnaDPhY0ueNyGMGxj5wccWry3A0QcYZcAW9_gBpLtO2-HLvg7bPPku4P9SK4igP8II7iyCcOmSylD6bAGaeg2hyU8hNCnC3TW2j7B7O-eovfHh7fFc7F8fXpZ3C-LmnMxFMKBcko6ImXdEK6ss1RADdmZKiJ1y0qtGueIhraigkrSSCCuUtyW0rUln6Lr47_bGL522cJkrRr63nrIqoZWQhKqJGcZvfqHrsMu-mxnqBZMllJLnambI1XHkFKE1uRUGxt_DCVmjG9yfDPGNzk-_wVIhHgt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942757979</pqid></control><display><type>article</type><title>Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools</title><source>Alma/SFX Local Collection</source><creator>Cornejo, Pablo K. ; Santana, Mark V. E. ; Hokanson, David R. ; Mihelcic, James R. ; Zhang, Qiong</creator><creatorcontrib>Cornejo, Pablo K. ; Santana, Mark V. E. ; Hokanson, David R. ; Mihelcic, James R. ; Zhang, Qiong</creatorcontrib><description>As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footprint of these systems from existing literature, recognizes general trends of carbon footprint of water reuse and desalination, and identifies challenges associated with comparing the carbon footprint. Furthermore, limitations, challenges, knowledge gaps, and recommendations associated with carbon footprint estimation tools are presented. Reverse osmosis (RO) technologies were found to have lower CO2 emissions than thermal desalination technologies and the estimated carbon footprint of seawater RO desalination (0.4-6.7 kg CO2eq/m3) is generally larger than brackish water RO desalination (0.4-2.5 kg CO2eq/m3) and water reuse systems (0.1-2.4 kg CO2eq/m3). The large range of reported values is due to variability in location, technologies, life cycle stages, parameters considered, and estimation tools, which were identified as major challenges to making accurate comparisons. Carbon footprint estimation tools could be improved by separating emissions by unit process, direct and indirect emissions, and considering the offset potential of various resource recovery strategies.</description><identifier>ISSN: 2220-1319</identifier><identifier>EISSN: 2408-9370</identifier><identifier>DOI: 10.2166/wrd.2014.058</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Augmentation ; Brackish ; Brackish water ; Brackish water desalination ; Carbon ; Carbon dioxide ; Carbon dioxide emissions ; Carbon footprint ; Desalination ; Emissions ; Environmental impact ; Greenhouse effect ; Greenhouse gases ; Life cycle ; Life cycle assessment ; Life cycle engineering ; Life cycles ; Parameter estimation ; Parameter identification ; Resource recovery ; Reverse osmosis ; Seawater ; Water consumption ; Water demand ; Water desalting ; Water reuse ; Water supply</subject><ispartof>Journal of water reuse and desalination, 2014-01, Vol.4 (4), p.238-252</ispartof><rights>Copyright IWA Publishing Dec 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4be8b87b077cd038aba14ece05518079f2598dbb09ef614170d7e0b683a57bf53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Cornejo, Pablo K.</creatorcontrib><creatorcontrib>Santana, Mark V. E.</creatorcontrib><creatorcontrib>Hokanson, David R.</creatorcontrib><creatorcontrib>Mihelcic, James R.</creatorcontrib><creatorcontrib>Zhang, Qiong</creatorcontrib><title>Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools</title><title>Journal of water reuse and desalination</title><description>As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footprint of these systems from existing literature, recognizes general trends of carbon footprint of water reuse and desalination, and identifies challenges associated with comparing the carbon footprint. Furthermore, limitations, challenges, knowledge gaps, and recommendations associated with carbon footprint estimation tools are presented. Reverse osmosis (RO) technologies were found to have lower CO2 emissions than thermal desalination technologies and the estimated carbon footprint of seawater RO desalination (0.4-6.7 kg CO2eq/m3) is generally larger than brackish water RO desalination (0.4-2.5 kg CO2eq/m3) and water reuse systems (0.1-2.4 kg CO2eq/m3). The large range of reported values is due to variability in location, technologies, life cycle stages, parameters considered, and estimation tools, which were identified as major challenges to making accurate comparisons. Carbon footprint estimation tools could be improved by separating emissions by unit process, direct and indirect emissions, and considering the offset potential of various resource recovery strategies.</description><subject>Augmentation</subject><subject>Brackish</subject><subject>Brackish water</subject><subject>Brackish water desalination</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon footprint</subject><subject>Desalination</subject><subject>Emissions</subject><subject>Environmental impact</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Life cycle</subject><subject>Life cycle assessment</subject><subject>Life cycle engineering</subject><subject>Life cycles</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Resource recovery</subject><subject>Reverse osmosis</subject><subject>Seawater</subject><subject>Water consumption</subject><subject>Water demand</subject><subject>Water desalting</subject><subject>Water reuse</subject><subject>Water supply</subject><issn>2220-1319</issn><issn>2408-9370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkMtKAzEUQIMoWGp3fkDAjQun5jWTxJ0UX1Bwo-uQzNypU6dJTaYW_95M68psErjnhsNB6JKSOaNVdbuPzZwRKuakVCdowgRRheaSnOY3Y6SgnOpzNEtpTfIpS80pnaDPhY0ueNyGMGxj5wccWry3A0QcYZcAW9_gBpLtO2-HLvg7bPPku4P9SK4igP8II7iyCcOmSylD6bAGaeg2hyU8hNCnC3TW2j7B7O-eovfHh7fFc7F8fXpZ3C-LmnMxFMKBcko6ImXdEK6ss1RADdmZKiJ1y0qtGueIhraigkrSSCCuUtyW0rUln6Lr47_bGL522cJkrRr63nrIqoZWQhKqJGcZvfqHrsMu-mxnqBZMllJLnambI1XHkFKE1uRUGxt_DCVmjG9yfDPGNzk-_wVIhHgt</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Cornejo, Pablo K.</creator><creator>Santana, Mark V. E.</creator><creator>Hokanson, David R.</creator><creator>Mihelcic, James R.</creator><creator>Zhang, Qiong</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7ST</scope><scope>H96</scope><scope>SOI</scope></search><sort><creationdate>20140101</creationdate><title>Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools</title><author>Cornejo, Pablo K. ; Santana, Mark V. E. ; Hokanson, David R. ; Mihelcic, James R. ; Zhang, Qiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4be8b87b077cd038aba14ece05518079f2598dbb09ef614170d7e0b683a57bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Augmentation</topic><topic>Brackish</topic><topic>Brackish water</topic><topic>Brackish water desalination</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon footprint</topic><topic>Desalination</topic><topic>Emissions</topic><topic>Environmental impact</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Life cycle</topic><topic>Life cycle assessment</topic><topic>Life cycle engineering</topic><topic>Life cycles</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Resource recovery</topic><topic>Reverse osmosis</topic><topic>Seawater</topic><topic>Water consumption</topic><topic>Water demand</topic><topic>Water desalting</topic><topic>Water reuse</topic><topic>Water supply</topic><toplevel>online_resources</toplevel><creatorcontrib>Cornejo, Pablo K.</creatorcontrib><creatorcontrib>Santana, Mark V. E.</creatorcontrib><creatorcontrib>Hokanson, David R.</creatorcontrib><creatorcontrib>Mihelcic, James R.</creatorcontrib><creatorcontrib>Zhang, Qiong</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Environment Abstracts</collection><jtitle>Journal of water reuse and desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornejo, Pablo K.</au><au>Santana, Mark V. E.</au><au>Hokanson, David R.</au><au>Mihelcic, James R.</au><au>Zhang, Qiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools</atitle><jtitle>Journal of water reuse and desalination</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>4</volume><issue>4</issue><spage>238</spage><epage>252</epage><pages>238-252</pages><issn>2220-1319</issn><eissn>2408-9370</eissn><abstract>As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footprint of these systems from existing literature, recognizes general trends of carbon footprint of water reuse and desalination, and identifies challenges associated with comparing the carbon footprint. Furthermore, limitations, challenges, knowledge gaps, and recommendations associated with carbon footprint estimation tools are presented. Reverse osmosis (RO) technologies were found to have lower CO2 emissions than thermal desalination technologies and the estimated carbon footprint of seawater RO desalination (0.4-6.7 kg CO2eq/m3) is generally larger than brackish water RO desalination (0.4-2.5 kg CO2eq/m3) and water reuse systems (0.1-2.4 kg CO2eq/m3). The large range of reported values is due to variability in location, technologies, life cycle stages, parameters considered, and estimation tools, which were identified as major challenges to making accurate comparisons. Carbon footprint estimation tools could be improved by separating emissions by unit process, direct and indirect emissions, and considering the offset potential of various resource recovery strategies.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/wrd.2014.058</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2220-1319 |
ispartof | Journal of water reuse and desalination, 2014-01, Vol.4 (4), p.238-252 |
issn | 2220-1319 2408-9370 |
language | eng |
recordid | cdi_proquest_miscellaneous_1647018732 |
source | Alma/SFX Local Collection |
subjects | Augmentation Brackish Brackish water Brackish water desalination Carbon Carbon dioxide Carbon dioxide emissions Carbon footprint Desalination Emissions Environmental impact Greenhouse effect Greenhouse gases Life cycle Life cycle assessment Life cycle engineering Life cycles Parameter estimation Parameter identification Resource recovery Reverse osmosis Seawater Water consumption Water demand Water desalting Water reuse Water supply |
title | Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20footprint%20of%20water%20reuse%20and%20desalination:%20a%20review%20of%20greenhouse%20gas%20emissions%20and%20estimation%20tools&rft.jtitle=Journal%20of%20water%20reuse%20and%20desalination&rft.au=Cornejo,%20Pablo%20K.&rft.date=2014-01-01&rft.volume=4&rft.issue=4&rft.spage=238&rft.epage=252&rft.pages=238-252&rft.issn=2220-1319&rft.eissn=2408-9370&rft_id=info:doi/10.2166/wrd.2014.058&rft_dat=%3Cproquest_cross%3E1647018732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942757979&rft_id=info:pmid/&rfr_iscdi=true |