Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools

As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footpr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of water reuse and desalination 2014-01, Vol.4 (4), p.238-252
Hauptverfasser: Cornejo, Pablo K., Santana, Mark V. E., Hokanson, David R., Mihelcic, James R., Zhang, Qiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 4
container_start_page 238
container_title Journal of water reuse and desalination
container_volume 4
creator Cornejo, Pablo K.
Santana, Mark V. E.
Hokanson, David R.
Mihelcic, James R.
Zhang, Qiong
description As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footprint of these systems from existing literature, recognizes general trends of carbon footprint of water reuse and desalination, and identifies challenges associated with comparing the carbon footprint. Furthermore, limitations, challenges, knowledge gaps, and recommendations associated with carbon footprint estimation tools are presented. Reverse osmosis (RO) technologies were found to have lower CO2 emissions than thermal desalination technologies and the estimated carbon footprint of seawater RO desalination (0.4-6.7 kg CO2eq/m3) is generally larger than brackish water RO desalination (0.4-2.5 kg CO2eq/m3) and water reuse systems (0.1-2.4 kg CO2eq/m3). The large range of reported values is due to variability in location, technologies, life cycle stages, parameters considered, and estimation tools, which were identified as major challenges to making accurate comparisons. Carbon footprint estimation tools could be improved by separating emissions by unit process, direct and indirect emissions, and considering the offset potential of various resource recovery strategies.
doi_str_mv 10.2166/wrd.2014.058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1647018732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1647018732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4be8b87b077cd038aba14ece05518079f2598dbb09ef614170d7e0b683a57bf53</originalsourceid><addsrcrecordid>eNpdkMtKAzEUQIMoWGp3fkDAjQun5jWTxJ0UX1Bwo-uQzNypU6dJTaYW_95M68psErjnhsNB6JKSOaNVdbuPzZwRKuakVCdowgRRheaSnOY3Y6SgnOpzNEtpTfIpS80pnaDPhY0ueNyGMGxj5wccWry3A0QcYZcAW9_gBpLtO2-HLvg7bPPku4P9SK4igP8II7iyCcOmSylD6bAGaeg2hyU8hNCnC3TW2j7B7O-eovfHh7fFc7F8fXpZ3C-LmnMxFMKBcko6ImXdEK6ss1RADdmZKiJ1y0qtGueIhraigkrSSCCuUtyW0rUln6Lr47_bGL522cJkrRr63nrIqoZWQhKqJGcZvfqHrsMu-mxnqBZMllJLnambI1XHkFKE1uRUGxt_DCVmjG9yfDPGNzk-_wVIhHgt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942757979</pqid></control><display><type>article</type><title>Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools</title><source>Alma/SFX Local Collection</source><creator>Cornejo, Pablo K. ; Santana, Mark V. E. ; Hokanson, David R. ; Mihelcic, James R. ; Zhang, Qiong</creator><creatorcontrib>Cornejo, Pablo K. ; Santana, Mark V. E. ; Hokanson, David R. ; Mihelcic, James R. ; Zhang, Qiong</creatorcontrib><description>As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footprint of these systems from existing literature, recognizes general trends of carbon footprint of water reuse and desalination, and identifies challenges associated with comparing the carbon footprint. Furthermore, limitations, challenges, knowledge gaps, and recommendations associated with carbon footprint estimation tools are presented. Reverse osmosis (RO) technologies were found to have lower CO2 emissions than thermal desalination technologies and the estimated carbon footprint of seawater RO desalination (0.4-6.7 kg CO2eq/m3) is generally larger than brackish water RO desalination (0.4-2.5 kg CO2eq/m3) and water reuse systems (0.1-2.4 kg CO2eq/m3). The large range of reported values is due to variability in location, technologies, life cycle stages, parameters considered, and estimation tools, which were identified as major challenges to making accurate comparisons. Carbon footprint estimation tools could be improved by separating emissions by unit process, direct and indirect emissions, and considering the offset potential of various resource recovery strategies.</description><identifier>ISSN: 2220-1319</identifier><identifier>EISSN: 2408-9370</identifier><identifier>DOI: 10.2166/wrd.2014.058</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Augmentation ; Brackish ; Brackish water ; Brackish water desalination ; Carbon ; Carbon dioxide ; Carbon dioxide emissions ; Carbon footprint ; Desalination ; Emissions ; Environmental impact ; Greenhouse effect ; Greenhouse gases ; Life cycle ; Life cycle assessment ; Life cycle engineering ; Life cycles ; Parameter estimation ; Parameter identification ; Resource recovery ; Reverse osmosis ; Seawater ; Water consumption ; Water demand ; Water desalting ; Water reuse ; Water supply</subject><ispartof>Journal of water reuse and desalination, 2014-01, Vol.4 (4), p.238-252</ispartof><rights>Copyright IWA Publishing Dec 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4be8b87b077cd038aba14ece05518079f2598dbb09ef614170d7e0b683a57bf53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Cornejo, Pablo K.</creatorcontrib><creatorcontrib>Santana, Mark V. E.</creatorcontrib><creatorcontrib>Hokanson, David R.</creatorcontrib><creatorcontrib>Mihelcic, James R.</creatorcontrib><creatorcontrib>Zhang, Qiong</creatorcontrib><title>Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools</title><title>Journal of water reuse and desalination</title><description>As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footprint of these systems from existing literature, recognizes general trends of carbon footprint of water reuse and desalination, and identifies challenges associated with comparing the carbon footprint. Furthermore, limitations, challenges, knowledge gaps, and recommendations associated with carbon footprint estimation tools are presented. Reverse osmosis (RO) technologies were found to have lower CO2 emissions than thermal desalination technologies and the estimated carbon footprint of seawater RO desalination (0.4-6.7 kg CO2eq/m3) is generally larger than brackish water RO desalination (0.4-2.5 kg CO2eq/m3) and water reuse systems (0.1-2.4 kg CO2eq/m3). The large range of reported values is due to variability in location, technologies, life cycle stages, parameters considered, and estimation tools, which were identified as major challenges to making accurate comparisons. Carbon footprint estimation tools could be improved by separating emissions by unit process, direct and indirect emissions, and considering the offset potential of various resource recovery strategies.</description><subject>Augmentation</subject><subject>Brackish</subject><subject>Brackish water</subject><subject>Brackish water desalination</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon footprint</subject><subject>Desalination</subject><subject>Emissions</subject><subject>Environmental impact</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Life cycle</subject><subject>Life cycle assessment</subject><subject>Life cycle engineering</subject><subject>Life cycles</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Resource recovery</subject><subject>Reverse osmosis</subject><subject>Seawater</subject><subject>Water consumption</subject><subject>Water demand</subject><subject>Water desalting</subject><subject>Water reuse</subject><subject>Water supply</subject><issn>2220-1319</issn><issn>2408-9370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkMtKAzEUQIMoWGp3fkDAjQun5jWTxJ0UX1Bwo-uQzNypU6dJTaYW_95M68psErjnhsNB6JKSOaNVdbuPzZwRKuakVCdowgRRheaSnOY3Y6SgnOpzNEtpTfIpS80pnaDPhY0ueNyGMGxj5wccWry3A0QcYZcAW9_gBpLtO2-HLvg7bPPku4P9SK4igP8II7iyCcOmSylD6bAGaeg2hyU8hNCnC3TW2j7B7O-eovfHh7fFc7F8fXpZ3C-LmnMxFMKBcko6ImXdEK6ss1RADdmZKiJ1y0qtGueIhraigkrSSCCuUtyW0rUln6Lr47_bGL522cJkrRr63nrIqoZWQhKqJGcZvfqHrsMu-mxnqBZMllJLnambI1XHkFKE1uRUGxt_DCVmjG9yfDPGNzk-_wVIhHgt</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Cornejo, Pablo K.</creator><creator>Santana, Mark V. E.</creator><creator>Hokanson, David R.</creator><creator>Mihelcic, James R.</creator><creator>Zhang, Qiong</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7ST</scope><scope>H96</scope><scope>SOI</scope></search><sort><creationdate>20140101</creationdate><title>Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools</title><author>Cornejo, Pablo K. ; Santana, Mark V. E. ; Hokanson, David R. ; Mihelcic, James R. ; Zhang, Qiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4be8b87b077cd038aba14ece05518079f2598dbb09ef614170d7e0b683a57bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Augmentation</topic><topic>Brackish</topic><topic>Brackish water</topic><topic>Brackish water desalination</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon footprint</topic><topic>Desalination</topic><topic>Emissions</topic><topic>Environmental impact</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Life cycle</topic><topic>Life cycle assessment</topic><topic>Life cycle engineering</topic><topic>Life cycles</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Resource recovery</topic><topic>Reverse osmosis</topic><topic>Seawater</topic><topic>Water consumption</topic><topic>Water demand</topic><topic>Water desalting</topic><topic>Water reuse</topic><topic>Water supply</topic><toplevel>online_resources</toplevel><creatorcontrib>Cornejo, Pablo K.</creatorcontrib><creatorcontrib>Santana, Mark V. E.</creatorcontrib><creatorcontrib>Hokanson, David R.</creatorcontrib><creatorcontrib>Mihelcic, James R.</creatorcontrib><creatorcontrib>Zhang, Qiong</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Environment Abstracts</collection><jtitle>Journal of water reuse and desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornejo, Pablo K.</au><au>Santana, Mark V. E.</au><au>Hokanson, David R.</au><au>Mihelcic, James R.</au><au>Zhang, Qiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools</atitle><jtitle>Journal of water reuse and desalination</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>4</volume><issue>4</issue><spage>238</spage><epage>252</epage><pages>238-252</pages><issn>2220-1319</issn><eissn>2408-9370</eissn><abstract>As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footprint of these systems from existing literature, recognizes general trends of carbon footprint of water reuse and desalination, and identifies challenges associated with comparing the carbon footprint. Furthermore, limitations, challenges, knowledge gaps, and recommendations associated with carbon footprint estimation tools are presented. Reverse osmosis (RO) technologies were found to have lower CO2 emissions than thermal desalination technologies and the estimated carbon footprint of seawater RO desalination (0.4-6.7 kg CO2eq/m3) is generally larger than brackish water RO desalination (0.4-2.5 kg CO2eq/m3) and water reuse systems (0.1-2.4 kg CO2eq/m3). The large range of reported values is due to variability in location, technologies, life cycle stages, parameters considered, and estimation tools, which were identified as major challenges to making accurate comparisons. Carbon footprint estimation tools could be improved by separating emissions by unit process, direct and indirect emissions, and considering the offset potential of various resource recovery strategies.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/wrd.2014.058</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-1319
ispartof Journal of water reuse and desalination, 2014-01, Vol.4 (4), p.238-252
issn 2220-1319
2408-9370
language eng
recordid cdi_proquest_miscellaneous_1647018732
source Alma/SFX Local Collection
subjects Augmentation
Brackish
Brackish water
Brackish water desalination
Carbon
Carbon dioxide
Carbon dioxide emissions
Carbon footprint
Desalination
Emissions
Environmental impact
Greenhouse effect
Greenhouse gases
Life cycle
Life cycle assessment
Life cycle engineering
Life cycles
Parameter estimation
Parameter identification
Resource recovery
Reverse osmosis
Seawater
Water consumption
Water demand
Water desalting
Water reuse
Water supply
title Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20footprint%20of%20water%20reuse%20and%20desalination:%20a%20review%20of%20greenhouse%20gas%20emissions%20and%20estimation%20tools&rft.jtitle=Journal%20of%20water%20reuse%20and%20desalination&rft.au=Cornejo,%20Pablo%20K.&rft.date=2014-01-01&rft.volume=4&rft.issue=4&rft.spage=238&rft.epage=252&rft.pages=238-252&rft.issn=2220-1319&rft.eissn=2408-9370&rft_id=info:doi/10.2166/wrd.2014.058&rft_dat=%3Cproquest_cross%3E1647018732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942757979&rft_id=info:pmid/&rfr_iscdi=true