Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis
To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances o...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2015-01, Vol.15 (1), p.148-159 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 1 |
container_start_page | 148 |
container_title | Proteomics (Weinheim) |
container_volume | 15 |
creator | Deng, Zhenglu Yan, Siyu Hu, Hui Duan, Zhigui Yin, Lanxuan Liao, Shenke Sun, Yubai Yin, Dazhong Li, Guolin |
description | To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long‐chain specific acyl‐CoA dehydrogenase was one of the key enzymes regulating fatty acid β‐oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline‐induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline‐induced steatosis. |
doi_str_mv | 10.1002/pmic.201400115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1647016822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3543593301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4720-34c6c4c303950ce51469452505800b3c6c9283332dedffba7fac2d92b18f32963</originalsourceid><addsrcrecordid>eNqNkc1v1DAUxCMEoqVw5YgsceGSxd9JuKGFlkIpPUA5Wo5jg0tib22nZcU_z4u27IELnPxk_2bkeVNVTwleEYzpy83kzYpiwjEmRNyrDokkou5aSe7vZ8EOqkc5XwHStF3zsDqggjFKCD2sfl2kWGwEF7RJ0fnRouiQ0amPYTvqYoflvlgfMvIBJV3Q6G9seoXe-GwiTD58Q5uYs-9BO1nzXQefp4xcTKjYkrTZmtEHW_swzAb8crG6xOzz4-qB02O2T-7Oo-rL8dvP63f12aeT0_Xrs9rwhuKacSMNNwyzTmBjBeGy44IKLFqMewaPHW0ZBBrs4FyvG6cNHTrak9Yx2kl2VL3Y-UKS69nmoib4ux1HHWycsyKSN5jIltL_QakkBMvF9flf6FWcU4AgC0VkJ1iLgVrtKJNgR8k6tUl-0mmrCFZLg2ppUO0bBMGzO9u5n-ywx_9UBgDfAbdQ1vYfduri4-m6gb2BrN7JPOz_516m0w8lG9YI9fX8RF2-v6Tn6w9cHbPfpb-2wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641695380</pqid></control><display><type>article</type><title>Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deng, Zhenglu ; Yan, Siyu ; Hu, Hui ; Duan, Zhigui ; Yin, Lanxuan ; Liao, Shenke ; Sun, Yubai ; Yin, Dazhong ; Li, Guolin</creator><creatorcontrib>Deng, Zhenglu ; Yan, Siyu ; Hu, Hui ; Duan, Zhigui ; Yin, Lanxuan ; Liao, Shenke ; Sun, Yubai ; Yin, Dazhong ; Li, Guolin</creatorcontrib><description>To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long‐chain specific acyl‐CoA dehydrogenase was one of the key enzymes regulating fatty acid β‐oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline‐induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline‐induced steatosis.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201400115</identifier><identifier>PMID: 25332112</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Animal proteomics ; Animals ; Anti-Bacterial Agents ; Carbonylation ; Enzymatic activity ; Fatty Acids - metabolism ; Fatty Liver - chemically induced ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Hep G2 Cells ; Humans ; Lipids ; Liver - metabolism ; Liver - pathology ; Male ; Nonalcoholic fatty liver disease (NAFLD) ; Oxidation ; Oxidative stress ; Protein Carbonylation ; Protein Interaction Maps ; Proteins ; Proteins - analysis ; Proteins - metabolism ; Proteomics ; Rat ; Rats ; Rats, Sprague-Dawley ; Rodents ; Tetracycline</subject><ispartof>Proteomics (Weinheim), 2015-01, Vol.15 (1), p.148-159</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4720-34c6c4c303950ce51469452505800b3c6c9283332dedffba7fac2d92b18f32963</citedby><cites>FETCH-LOGICAL-c4720-34c6c4c303950ce51469452505800b3c6c9283332dedffba7fac2d92b18f32963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.201400115$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.201400115$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25332112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Zhenglu</creatorcontrib><creatorcontrib>Yan, Siyu</creatorcontrib><creatorcontrib>Hu, Hui</creatorcontrib><creatorcontrib>Duan, Zhigui</creatorcontrib><creatorcontrib>Yin, Lanxuan</creatorcontrib><creatorcontrib>Liao, Shenke</creatorcontrib><creatorcontrib>Sun, Yubai</creatorcontrib><creatorcontrib>Yin, Dazhong</creatorcontrib><creatorcontrib>Li, Guolin</creatorcontrib><title>Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long‐chain specific acyl‐CoA dehydrogenase was one of the key enzymes regulating fatty acid β‐oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline‐induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline‐induced steatosis.</description><subject>Animal proteomics</subject><subject>Animals</subject><subject>Anti-Bacterial Agents</subject><subject>Carbonylation</subject><subject>Enzymatic activity</subject><subject>Fatty Acids - metabolism</subject><subject>Fatty Liver - chemically induced</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Lipids</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Nonalcoholic fatty liver disease (NAFLD)</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Protein Carbonylation</subject><subject>Protein Interaction Maps</subject><subject>Proteins</subject><subject>Proteins - analysis</subject><subject>Proteins - metabolism</subject><subject>Proteomics</subject><subject>Rat</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Tetracycline</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAUxCMEoqVw5YgsceGSxd9JuKGFlkIpPUA5Wo5jg0tib22nZcU_z4u27IELnPxk_2bkeVNVTwleEYzpy83kzYpiwjEmRNyrDokkou5aSe7vZ8EOqkc5XwHStF3zsDqggjFKCD2sfl2kWGwEF7RJ0fnRouiQ0amPYTvqYoflvlgfMvIBJV3Q6G9seoXe-GwiTD58Q5uYs-9BO1nzXQefp4xcTKjYkrTZmtEHW_swzAb8crG6xOzz4-qB02O2T-7Oo-rL8dvP63f12aeT0_Xrs9rwhuKacSMNNwyzTmBjBeGy44IKLFqMewaPHW0ZBBrs4FyvG6cNHTrak9Yx2kl2VL3Y-UKS69nmoib4ux1HHWycsyKSN5jIltL_QakkBMvF9flf6FWcU4AgC0VkJ1iLgVrtKJNgR8k6tUl-0mmrCFZLg2ppUO0bBMGzO9u5n-ywx_9UBgDfAbdQ1vYfduri4-m6gb2BrN7JPOz_516m0w8lG9YI9fX8RF2-v6Tn6w9cHbPfpb-2wg</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Deng, Zhenglu</creator><creator>Yan, Siyu</creator><creator>Hu, Hui</creator><creator>Duan, Zhigui</creator><creator>Yin, Lanxuan</creator><creator>Liao, Shenke</creator><creator>Sun, Yubai</creator><creator>Yin, Dazhong</creator><creator>Li, Guolin</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201501</creationdate><title>Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis</title><author>Deng, Zhenglu ; Yan, Siyu ; Hu, Hui ; Duan, Zhigui ; Yin, Lanxuan ; Liao, Shenke ; Sun, Yubai ; Yin, Dazhong ; Li, Guolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4720-34c6c4c303950ce51469452505800b3c6c9283332dedffba7fac2d92b18f32963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal proteomics</topic><topic>Animals</topic><topic>Anti-Bacterial Agents</topic><topic>Carbonylation</topic><topic>Enzymatic activity</topic><topic>Fatty Acids - metabolism</topic><topic>Fatty Liver - chemically induced</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Lipids</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Nonalcoholic fatty liver disease (NAFLD)</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Protein Carbonylation</topic><topic>Protein Interaction Maps</topic><topic>Proteins</topic><topic>Proteins - analysis</topic><topic>Proteins - metabolism</topic><topic>Proteomics</topic><topic>Rat</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Tetracycline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zhenglu</creatorcontrib><creatorcontrib>Yan, Siyu</creatorcontrib><creatorcontrib>Hu, Hui</creatorcontrib><creatorcontrib>Duan, Zhigui</creatorcontrib><creatorcontrib>Yin, Lanxuan</creatorcontrib><creatorcontrib>Liao, Shenke</creatorcontrib><creatorcontrib>Sun, Yubai</creatorcontrib><creatorcontrib>Yin, Dazhong</creatorcontrib><creatorcontrib>Li, Guolin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zhenglu</au><au>Yan, Siyu</au><au>Hu, Hui</au><au>Duan, Zhigui</au><au>Yin, Lanxuan</au><au>Liao, Shenke</au><au>Sun, Yubai</au><au>Yin, Dazhong</au><au>Li, Guolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2015-01</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>148</spage><epage>159</epage><pages>148-159</pages><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long‐chain specific acyl‐CoA dehydrogenase was one of the key enzymes regulating fatty acid β‐oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline‐induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline‐induced steatosis.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25332112</pmid><doi>10.1002/pmic.201400115</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9853 |
ispartof | Proteomics (Weinheim), 2015-01, Vol.15 (1), p.148-159 |
issn | 1615-9853 1615-9861 |
language | eng |
recordid | cdi_proquest_miscellaneous_1647016822 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animal proteomics Animals Anti-Bacterial Agents Carbonylation Enzymatic activity Fatty Acids - metabolism Fatty Liver - chemically induced Fatty Liver - metabolism Fatty Liver - pathology Hep G2 Cells Humans Lipids Liver - metabolism Liver - pathology Male Nonalcoholic fatty liver disease (NAFLD) Oxidation Oxidative stress Protein Carbonylation Protein Interaction Maps Proteins Proteins - analysis Proteins - metabolism Proteomics Rat Rats Rats, Sprague-Dawley Rodents Tetracycline |
title | Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20profile%20of%20carbonylated%20proteins%20in%20rat%20liver:%20Discovering%20possible%20mechanisms%20for%20tetracycline-induced%20steatosis&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Deng,%20Zhenglu&rft.date=2015-01&rft.volume=15&rft.issue=1&rft.spage=148&rft.epage=159&rft.pages=148-159&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201400115&rft_dat=%3Cproquest_cross%3E3543593301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1641695380&rft_id=info:pmid/25332112&rfr_iscdi=true |