Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis

To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteomics (Weinheim) 2015-01, Vol.15 (1), p.148-159
Hauptverfasser: Deng, Zhenglu, Yan, Siyu, Hu, Hui, Duan, Zhigui, Yin, Lanxuan, Liao, Shenke, Sun, Yubai, Yin, Dazhong, Li, Guolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 1
container_start_page 148
container_title Proteomics (Weinheim)
container_volume 15
creator Deng, Zhenglu
Yan, Siyu
Hu, Hui
Duan, Zhigui
Yin, Lanxuan
Liao, Shenke
Sun, Yubai
Yin, Dazhong
Li, Guolin
description To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long‐chain specific acyl‐CoA dehydrogenase was one of the key enzymes regulating fatty acid β‐oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline‐induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline‐induced steatosis.
doi_str_mv 10.1002/pmic.201400115
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1647016822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3543593301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4720-34c6c4c303950ce51469452505800b3c6c9283332dedffba7fac2d92b18f32963</originalsourceid><addsrcrecordid>eNqNkc1v1DAUxCMEoqVw5YgsceGSxd9JuKGFlkIpPUA5Wo5jg0tib22nZcU_z4u27IELnPxk_2bkeVNVTwleEYzpy83kzYpiwjEmRNyrDokkou5aSe7vZ8EOqkc5XwHStF3zsDqggjFKCD2sfl2kWGwEF7RJ0fnRouiQ0amPYTvqYoflvlgfMvIBJV3Q6G9seoXe-GwiTD58Q5uYs-9BO1nzXQefp4xcTKjYkrTZmtEHW_swzAb8crG6xOzz4-qB02O2T-7Oo-rL8dvP63f12aeT0_Xrs9rwhuKacSMNNwyzTmBjBeGy44IKLFqMewaPHW0ZBBrs4FyvG6cNHTrak9Yx2kl2VL3Y-UKS69nmoib4ux1HHWycsyKSN5jIltL_QakkBMvF9flf6FWcU4AgC0VkJ1iLgVrtKJNgR8k6tUl-0mmrCFZLg2ppUO0bBMGzO9u5n-ywx_9UBgDfAbdQ1vYfduri4-m6gb2BrN7JPOz_516m0w8lG9YI9fX8RF2-v6Tn6w9cHbPfpb-2wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641695380</pqid></control><display><type>article</type><title>Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deng, Zhenglu ; Yan, Siyu ; Hu, Hui ; Duan, Zhigui ; Yin, Lanxuan ; Liao, Shenke ; Sun, Yubai ; Yin, Dazhong ; Li, Guolin</creator><creatorcontrib>Deng, Zhenglu ; Yan, Siyu ; Hu, Hui ; Duan, Zhigui ; Yin, Lanxuan ; Liao, Shenke ; Sun, Yubai ; Yin, Dazhong ; Li, Guolin</creatorcontrib><description>To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long‐chain specific acyl‐CoA dehydrogenase was one of the key enzymes regulating fatty acid β‐oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline‐induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline‐induced steatosis.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201400115</identifier><identifier>PMID: 25332112</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Animal proteomics ; Animals ; Anti-Bacterial Agents ; Carbonylation ; Enzymatic activity ; Fatty Acids - metabolism ; Fatty Liver - chemically induced ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Hep G2 Cells ; Humans ; Lipids ; Liver - metabolism ; Liver - pathology ; Male ; Nonalcoholic fatty liver disease (NAFLD) ; Oxidation ; Oxidative stress ; Protein Carbonylation ; Protein Interaction Maps ; Proteins ; Proteins - analysis ; Proteins - metabolism ; Proteomics ; Rat ; Rats ; Rats, Sprague-Dawley ; Rodents ; Tetracycline</subject><ispartof>Proteomics (Weinheim), 2015-01, Vol.15 (1), p.148-159</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4720-34c6c4c303950ce51469452505800b3c6c9283332dedffba7fac2d92b18f32963</citedby><cites>FETCH-LOGICAL-c4720-34c6c4c303950ce51469452505800b3c6c9283332dedffba7fac2d92b18f32963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.201400115$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.201400115$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25332112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Zhenglu</creatorcontrib><creatorcontrib>Yan, Siyu</creatorcontrib><creatorcontrib>Hu, Hui</creatorcontrib><creatorcontrib>Duan, Zhigui</creatorcontrib><creatorcontrib>Yin, Lanxuan</creatorcontrib><creatorcontrib>Liao, Shenke</creatorcontrib><creatorcontrib>Sun, Yubai</creatorcontrib><creatorcontrib>Yin, Dazhong</creatorcontrib><creatorcontrib>Li, Guolin</creatorcontrib><title>Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long‐chain specific acyl‐CoA dehydrogenase was one of the key enzymes regulating fatty acid β‐oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline‐induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline‐induced steatosis.</description><subject>Animal proteomics</subject><subject>Animals</subject><subject>Anti-Bacterial Agents</subject><subject>Carbonylation</subject><subject>Enzymatic activity</subject><subject>Fatty Acids - metabolism</subject><subject>Fatty Liver - chemically induced</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Lipids</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Nonalcoholic fatty liver disease (NAFLD)</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Protein Carbonylation</subject><subject>Protein Interaction Maps</subject><subject>Proteins</subject><subject>Proteins - analysis</subject><subject>Proteins - metabolism</subject><subject>Proteomics</subject><subject>Rat</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Tetracycline</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAUxCMEoqVw5YgsceGSxd9JuKGFlkIpPUA5Wo5jg0tib22nZcU_z4u27IELnPxk_2bkeVNVTwleEYzpy83kzYpiwjEmRNyrDokkou5aSe7vZ8EOqkc5XwHStF3zsDqggjFKCD2sfl2kWGwEF7RJ0fnRouiQ0amPYTvqYoflvlgfMvIBJV3Q6G9seoXe-GwiTD58Q5uYs-9BO1nzXQefp4xcTKjYkrTZmtEHW_swzAb8crG6xOzz4-qB02O2T-7Oo-rL8dvP63f12aeT0_Xrs9rwhuKacSMNNwyzTmBjBeGy44IKLFqMewaPHW0ZBBrs4FyvG6cNHTrak9Yx2kl2VL3Y-UKS69nmoib4ux1HHWycsyKSN5jIltL_QakkBMvF9flf6FWcU4AgC0VkJ1iLgVrtKJNgR8k6tUl-0mmrCFZLg2ppUO0bBMGzO9u5n-ywx_9UBgDfAbdQ1vYfduri4-m6gb2BrN7JPOz_516m0w8lG9YI9fX8RF2-v6Tn6w9cHbPfpb-2wg</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Deng, Zhenglu</creator><creator>Yan, Siyu</creator><creator>Hu, Hui</creator><creator>Duan, Zhigui</creator><creator>Yin, Lanxuan</creator><creator>Liao, Shenke</creator><creator>Sun, Yubai</creator><creator>Yin, Dazhong</creator><creator>Li, Guolin</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201501</creationdate><title>Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis</title><author>Deng, Zhenglu ; Yan, Siyu ; Hu, Hui ; Duan, Zhigui ; Yin, Lanxuan ; Liao, Shenke ; Sun, Yubai ; Yin, Dazhong ; Li, Guolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4720-34c6c4c303950ce51469452505800b3c6c9283332dedffba7fac2d92b18f32963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal proteomics</topic><topic>Animals</topic><topic>Anti-Bacterial Agents</topic><topic>Carbonylation</topic><topic>Enzymatic activity</topic><topic>Fatty Acids - metabolism</topic><topic>Fatty Liver - chemically induced</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Lipids</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Nonalcoholic fatty liver disease (NAFLD)</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Protein Carbonylation</topic><topic>Protein Interaction Maps</topic><topic>Proteins</topic><topic>Proteins - analysis</topic><topic>Proteins - metabolism</topic><topic>Proteomics</topic><topic>Rat</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Tetracycline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zhenglu</creatorcontrib><creatorcontrib>Yan, Siyu</creatorcontrib><creatorcontrib>Hu, Hui</creatorcontrib><creatorcontrib>Duan, Zhigui</creatorcontrib><creatorcontrib>Yin, Lanxuan</creatorcontrib><creatorcontrib>Liao, Shenke</creatorcontrib><creatorcontrib>Sun, Yubai</creatorcontrib><creatorcontrib>Yin, Dazhong</creatorcontrib><creatorcontrib>Li, Guolin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zhenglu</au><au>Yan, Siyu</au><au>Hu, Hui</au><au>Duan, Zhigui</au><au>Yin, Lanxuan</au><au>Liao, Shenke</au><au>Sun, Yubai</au><au>Yin, Dazhong</au><au>Li, Guolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2015-01</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>148</spage><epage>159</epage><pages>148-159</pages><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long‐chain specific acyl‐CoA dehydrogenase was one of the key enzymes regulating fatty acid β‐oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline‐induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline‐induced steatosis.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25332112</pmid><doi>10.1002/pmic.201400115</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-9853
ispartof Proteomics (Weinheim), 2015-01, Vol.15 (1), p.148-159
issn 1615-9853
1615-9861
language eng
recordid cdi_proquest_miscellaneous_1647016822
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal proteomics
Animals
Anti-Bacterial Agents
Carbonylation
Enzymatic activity
Fatty Acids - metabolism
Fatty Liver - chemically induced
Fatty Liver - metabolism
Fatty Liver - pathology
Hep G2 Cells
Humans
Lipids
Liver - metabolism
Liver - pathology
Male
Nonalcoholic fatty liver disease (NAFLD)
Oxidation
Oxidative stress
Protein Carbonylation
Protein Interaction Maps
Proteins
Proteins - analysis
Proteins - metabolism
Proteomics
Rat
Rats
Rats, Sprague-Dawley
Rodents
Tetracycline
title Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline-induced steatosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20profile%20of%20carbonylated%20proteins%20in%20rat%20liver:%20Discovering%20possible%20mechanisms%20for%20tetracycline-induced%20steatosis&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Deng,%20Zhenglu&rft.date=2015-01&rft.volume=15&rft.issue=1&rft.spage=148&rft.epage=159&rft.pages=148-159&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201400115&rft_dat=%3Cproquest_cross%3E3543593301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1641695380&rft_id=info:pmid/25332112&rfr_iscdi=true