Pervasive Axonal Transport Deficits in Multiple Sclerosis Models

Impaired axonal transport can contribute to axon degeneration and has been described in many neurodegenerative diseases. Multiple sclerosis (MS) is a common neuroinflammatory disease, which is characterized by progressive axon degeneration—whether, when, and how axonal transport is affected in this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2014-12, Vol.84 (6), p.1183-1190
Hauptverfasser: Sorbara, Catherine Diamante, Wagner, Naomi Elizabeth, Ladwig, Anne, Nikić, Ivana, Merkler, Doron, Kleele, Tatjana, Marinković, Petar, Naumann, Ronald, Godinho, Leanne, Bareyre, Florence Martine, Bishop, Derron, Misgeld, Thomas, Kerschensteiner, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1190
container_issue 6
container_start_page 1183
container_title Neuron (Cambridge, Mass.)
container_volume 84
creator Sorbara, Catherine Diamante
Wagner, Naomi Elizabeth
Ladwig, Anne
Nikić, Ivana
Merkler, Doron
Kleele, Tatjana
Marinković, Petar
Naumann, Ronald
Godinho, Leanne
Bareyre, Florence Martine
Bishop, Derron
Misgeld, Thomas
Kerschensteiner, Martin
description Impaired axonal transport can contribute to axon degeneration and has been described in many neurodegenerative diseases. Multiple sclerosis (MS) is a common neuroinflammatory disease, which is characterized by progressive axon degeneration—whether, when, and how axonal transport is affected in this condition is unknown. Here we used in vivo two-photon imaging to directly assay transport of organelles and the stability of microtubule tracks in individual spinal axons in mouse models of MS. We found widespread transport deficits, which preceded structural alterations of axons, cargos, or microtubules and could be reversed by acute anti-inflammatory interventions or redox scavenging. Our study shows that acute neuroinflammation induces a pervasive state of reversible axonal dysfunction, which coincides with acute disease symptoms. Moreover, perpetuated transport dysfunction, as we found in a model of progressive MS, led to reduced distal organelle supply and could thus contribute to axonal dystrophy in advanced stages of the disease. •In vivo imaging reveals widespread impairment of organelle transport in MS models•Transport deficits precede structural alterations of axons, myelin, or microtubules•In chronic but not in acute MS models, this reduces distal organelle density•Redox scavenging improves transport impairments in neuroinflammatory lesions Sorbara et al. image the movement of individual organelles in spinal axons of mice to show that axonal transport arrests in axons within neuroinflammatory lesions. This identifies a reversible stage of axon dysfunction that precedes structural axon damage.
doi_str_mv 10.1016/j.neuron.2014.11.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1647012554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731401006X</els_id><sourcerecordid>1639486769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-6cf28aa4d52605e383d30a22d544211bec0c6b8b0d1a56742f4059e4595711f3</originalsourceid><addsrcrecordid>eNqFkUtv2zAQhImgQeKk_QdFIKCXXKRw-ZJ4KWokzQOwkQL1naCpFUBDFh1SMpp_H6ZOe-ihOe3lm9ndGUI-A62AgrraVANOMQwVoyAqgIpSdURmQHVdCtD6A5nRRqtSsZqfkrOUNjSDUsMJOWVScK64npFvPzDubfJ7LOa_wmD7YhXtkHYhjsUNdt75MRV-KJZTP_pdj8VP12MMyadiGVrs00dy3Nk-4ae3eU5Wt99X1_fl4vHu4Xq-KJ3keiyV61hjrWglU1Qib3jLqWWslUIwgDU66tS6WdMWrFS1YJ2gUmO-V9YAHT8nlwfbXQxPE6bRbH1y2Pd2wDAlA0rUFJjMj72Pci0aVSud0S__oJswxZzCb6pWXCrZZEocKJcfTxE7s4t-a-OzAWpeuzAbc-jCvHZhAEzuIssu3syn9Rbbv6I_4Wfg6wHIMeLeYzTJeRwctj6iG00b_P83vACk7Jod</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1637635658</pqid></control><display><type>article</type><title>Pervasive Axonal Transport Deficits in Multiple Sclerosis Models</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sorbara, Catherine Diamante ; Wagner, Naomi Elizabeth ; Ladwig, Anne ; Nikić, Ivana ; Merkler, Doron ; Kleele, Tatjana ; Marinković, Petar ; Naumann, Ronald ; Godinho, Leanne ; Bareyre, Florence Martine ; Bishop, Derron ; Misgeld, Thomas ; Kerschensteiner, Martin</creator><creatorcontrib>Sorbara, Catherine Diamante ; Wagner, Naomi Elizabeth ; Ladwig, Anne ; Nikić, Ivana ; Merkler, Doron ; Kleele, Tatjana ; Marinković, Petar ; Naumann, Ronald ; Godinho, Leanne ; Bareyre, Florence Martine ; Bishop, Derron ; Misgeld, Thomas ; Kerschensteiner, Martin</creatorcontrib><description>Impaired axonal transport can contribute to axon degeneration and has been described in many neurodegenerative diseases. Multiple sclerosis (MS) is a common neuroinflammatory disease, which is characterized by progressive axon degeneration—whether, when, and how axonal transport is affected in this condition is unknown. Here we used in vivo two-photon imaging to directly assay transport of organelles and the stability of microtubule tracks in individual spinal axons in mouse models of MS. We found widespread transport deficits, which preceded structural alterations of axons, cargos, or microtubules and could be reversed by acute anti-inflammatory interventions or redox scavenging. Our study shows that acute neuroinflammation induces a pervasive state of reversible axonal dysfunction, which coincides with acute disease symptoms. Moreover, perpetuated transport dysfunction, as we found in a model of progressive MS, led to reduced distal organelle supply and could thus contribute to axonal dystrophy in advanced stages of the disease. •In vivo imaging reveals widespread impairment of organelle transport in MS models•Transport deficits precede structural alterations of axons, myelin, or microtubules•In chronic but not in acute MS models, this reduces distal organelle density•Redox scavenging improves transport impairments in neuroinflammatory lesions Sorbara et al. image the movement of individual organelles in spinal axons of mice to show that axonal transport arrests in axons within neuroinflammatory lesions. This identifies a reversible stage of axon dysfunction that precedes structural axon damage.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2014.11.006</identifier><identifier>PMID: 25433639</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Axonal Transport - drug effects ; Axonal Transport - physiology ; Axons - physiology ; Cytoskeleton ; Disease ; Disease Models, Animal ; Free Radical Scavengers - pharmacology ; Functional Neuroimaging ; Mice ; Microscopy ; Microtubules - physiology ; Mitochondria ; Multiple Sclerosis - pathology ; Multiple Sclerosis - physiopathology ; Mutation ; Nerve Degeneration - physiopathology ; Neurodegeneration ; Nitric Oxide Donors - pharmacology ; Organelles - physiology ; Rodents ; Spermine - analogs &amp; derivatives ; Spermine - pharmacology ; Spinal Cord - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2014-12, Vol.84 (6), p.1183-1190</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 17, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-6cf28aa4d52605e383d30a22d544211bec0c6b8b0d1a56742f4059e4595711f3</citedby><cites>FETCH-LOGICAL-c539t-6cf28aa4d52605e383d30a22d544211bec0c6b8b0d1a56742f4059e4595711f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089662731401006X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25433639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sorbara, Catherine Diamante</creatorcontrib><creatorcontrib>Wagner, Naomi Elizabeth</creatorcontrib><creatorcontrib>Ladwig, Anne</creatorcontrib><creatorcontrib>Nikić, Ivana</creatorcontrib><creatorcontrib>Merkler, Doron</creatorcontrib><creatorcontrib>Kleele, Tatjana</creatorcontrib><creatorcontrib>Marinković, Petar</creatorcontrib><creatorcontrib>Naumann, Ronald</creatorcontrib><creatorcontrib>Godinho, Leanne</creatorcontrib><creatorcontrib>Bareyre, Florence Martine</creatorcontrib><creatorcontrib>Bishop, Derron</creatorcontrib><creatorcontrib>Misgeld, Thomas</creatorcontrib><creatorcontrib>Kerschensteiner, Martin</creatorcontrib><title>Pervasive Axonal Transport Deficits in Multiple Sclerosis Models</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Impaired axonal transport can contribute to axon degeneration and has been described in many neurodegenerative diseases. Multiple sclerosis (MS) is a common neuroinflammatory disease, which is characterized by progressive axon degeneration—whether, when, and how axonal transport is affected in this condition is unknown. Here we used in vivo two-photon imaging to directly assay transport of organelles and the stability of microtubule tracks in individual spinal axons in mouse models of MS. We found widespread transport deficits, which preceded structural alterations of axons, cargos, or microtubules and could be reversed by acute anti-inflammatory interventions or redox scavenging. Our study shows that acute neuroinflammation induces a pervasive state of reversible axonal dysfunction, which coincides with acute disease symptoms. Moreover, perpetuated transport dysfunction, as we found in a model of progressive MS, led to reduced distal organelle supply and could thus contribute to axonal dystrophy in advanced stages of the disease. •In vivo imaging reveals widespread impairment of organelle transport in MS models•Transport deficits precede structural alterations of axons, myelin, or microtubules•In chronic but not in acute MS models, this reduces distal organelle density•Redox scavenging improves transport impairments in neuroinflammatory lesions Sorbara et al. image the movement of individual organelles in spinal axons of mice to show that axonal transport arrests in axons within neuroinflammatory lesions. This identifies a reversible stage of axon dysfunction that precedes structural axon damage.</description><subject>Animals</subject><subject>Axonal Transport - drug effects</subject><subject>Axonal Transport - physiology</subject><subject>Axons - physiology</subject><subject>Cytoskeleton</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Free Radical Scavengers - pharmacology</subject><subject>Functional Neuroimaging</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microtubules - physiology</subject><subject>Mitochondria</subject><subject>Multiple Sclerosis - pathology</subject><subject>Multiple Sclerosis - physiopathology</subject><subject>Mutation</subject><subject>Nerve Degeneration - physiopathology</subject><subject>Neurodegeneration</subject><subject>Nitric Oxide Donors - pharmacology</subject><subject>Organelles - physiology</subject><subject>Rodents</subject><subject>Spermine - analogs &amp; derivatives</subject><subject>Spermine - pharmacology</subject><subject>Spinal Cord - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv2zAQhImgQeKk_QdFIKCXXKRw-ZJ4KWokzQOwkQL1naCpFUBDFh1SMpp_H6ZOe-ihOe3lm9ndGUI-A62AgrraVANOMQwVoyAqgIpSdURmQHVdCtD6A5nRRqtSsZqfkrOUNjSDUsMJOWVScK64npFvPzDubfJ7LOa_wmD7YhXtkHYhjsUNdt75MRV-KJZTP_pdj8VP12MMyadiGVrs00dy3Nk-4ae3eU5Wt99X1_fl4vHu4Xq-KJ3keiyV61hjrWglU1Qib3jLqWWslUIwgDU66tS6WdMWrFS1YJ2gUmO-V9YAHT8nlwfbXQxPE6bRbH1y2Pd2wDAlA0rUFJjMj72Pci0aVSud0S__oJswxZzCb6pWXCrZZEocKJcfTxE7s4t-a-OzAWpeuzAbc-jCvHZhAEzuIssu3syn9Rbbv6I_4Wfg6wHIMeLeYzTJeRwctj6iG00b_P83vACk7Jod</recordid><startdate>20141217</startdate><enddate>20141217</enddate><creator>Sorbara, Catherine Diamante</creator><creator>Wagner, Naomi Elizabeth</creator><creator>Ladwig, Anne</creator><creator>Nikić, Ivana</creator><creator>Merkler, Doron</creator><creator>Kleele, Tatjana</creator><creator>Marinković, Petar</creator><creator>Naumann, Ronald</creator><creator>Godinho, Leanne</creator><creator>Bareyre, Florence Martine</creator><creator>Bishop, Derron</creator><creator>Misgeld, Thomas</creator><creator>Kerschensteiner, Martin</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20141217</creationdate><title>Pervasive Axonal Transport Deficits in Multiple Sclerosis Models</title><author>Sorbara, Catherine Diamante ; Wagner, Naomi Elizabeth ; Ladwig, Anne ; Nikić, Ivana ; Merkler, Doron ; Kleele, Tatjana ; Marinković, Petar ; Naumann, Ronald ; Godinho, Leanne ; Bareyre, Florence Martine ; Bishop, Derron ; Misgeld, Thomas ; Kerschensteiner, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-6cf28aa4d52605e383d30a22d544211bec0c6b8b0d1a56742f4059e4595711f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Axonal Transport - drug effects</topic><topic>Axonal Transport - physiology</topic><topic>Axons - physiology</topic><topic>Cytoskeleton</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Free Radical Scavengers - pharmacology</topic><topic>Functional Neuroimaging</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microtubules - physiology</topic><topic>Mitochondria</topic><topic>Multiple Sclerosis - pathology</topic><topic>Multiple Sclerosis - physiopathology</topic><topic>Mutation</topic><topic>Nerve Degeneration - physiopathology</topic><topic>Neurodegeneration</topic><topic>Nitric Oxide Donors - pharmacology</topic><topic>Organelles - physiology</topic><topic>Rodents</topic><topic>Spermine - analogs &amp; derivatives</topic><topic>Spermine - pharmacology</topic><topic>Spinal Cord - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorbara, Catherine Diamante</creatorcontrib><creatorcontrib>Wagner, Naomi Elizabeth</creatorcontrib><creatorcontrib>Ladwig, Anne</creatorcontrib><creatorcontrib>Nikić, Ivana</creatorcontrib><creatorcontrib>Merkler, Doron</creatorcontrib><creatorcontrib>Kleele, Tatjana</creatorcontrib><creatorcontrib>Marinković, Petar</creatorcontrib><creatorcontrib>Naumann, Ronald</creatorcontrib><creatorcontrib>Godinho, Leanne</creatorcontrib><creatorcontrib>Bareyre, Florence Martine</creatorcontrib><creatorcontrib>Bishop, Derron</creatorcontrib><creatorcontrib>Misgeld, Thomas</creatorcontrib><creatorcontrib>Kerschensteiner, Martin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorbara, Catherine Diamante</au><au>Wagner, Naomi Elizabeth</au><au>Ladwig, Anne</au><au>Nikić, Ivana</au><au>Merkler, Doron</au><au>Kleele, Tatjana</au><au>Marinković, Petar</au><au>Naumann, Ronald</au><au>Godinho, Leanne</au><au>Bareyre, Florence Martine</au><au>Bishop, Derron</au><au>Misgeld, Thomas</au><au>Kerschensteiner, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pervasive Axonal Transport Deficits in Multiple Sclerosis Models</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-12-17</date><risdate>2014</risdate><volume>84</volume><issue>6</issue><spage>1183</spage><epage>1190</epage><pages>1183-1190</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Impaired axonal transport can contribute to axon degeneration and has been described in many neurodegenerative diseases. Multiple sclerosis (MS) is a common neuroinflammatory disease, which is characterized by progressive axon degeneration—whether, when, and how axonal transport is affected in this condition is unknown. Here we used in vivo two-photon imaging to directly assay transport of organelles and the stability of microtubule tracks in individual spinal axons in mouse models of MS. We found widespread transport deficits, which preceded structural alterations of axons, cargos, or microtubules and could be reversed by acute anti-inflammatory interventions or redox scavenging. Our study shows that acute neuroinflammation induces a pervasive state of reversible axonal dysfunction, which coincides with acute disease symptoms. Moreover, perpetuated transport dysfunction, as we found in a model of progressive MS, led to reduced distal organelle supply and could thus contribute to axonal dystrophy in advanced stages of the disease. •In vivo imaging reveals widespread impairment of organelle transport in MS models•Transport deficits precede structural alterations of axons, myelin, or microtubules•In chronic but not in acute MS models, this reduces distal organelle density•Redox scavenging improves transport impairments in neuroinflammatory lesions Sorbara et al. image the movement of individual organelles in spinal axons of mice to show that axonal transport arrests in axons within neuroinflammatory lesions. This identifies a reversible stage of axon dysfunction that precedes structural axon damage.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25433639</pmid><doi>10.1016/j.neuron.2014.11.006</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2014-12, Vol.84 (6), p.1183-1190
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_1647012554
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
Axonal Transport - drug effects
Axonal Transport - physiology
Axons - physiology
Cytoskeleton
Disease
Disease Models, Animal
Free Radical Scavengers - pharmacology
Functional Neuroimaging
Mice
Microscopy
Microtubules - physiology
Mitochondria
Multiple Sclerosis - pathology
Multiple Sclerosis - physiopathology
Mutation
Nerve Degeneration - physiopathology
Neurodegeneration
Nitric Oxide Donors - pharmacology
Organelles - physiology
Rodents
Spermine - analogs & derivatives
Spermine - pharmacology
Spinal Cord - physiology
title Pervasive Axonal Transport Deficits in Multiple Sclerosis Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pervasive%20Axonal%20Transport%20Deficits%20in%20Multiple%20Sclerosis%20Models&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Sorbara,%20Catherine%C2%A0Diamante&rft.date=2014-12-17&rft.volume=84&rft.issue=6&rft.spage=1183&rft.epage=1190&rft.pages=1183-1190&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2014.11.006&rft_dat=%3Cproquest_cross%3E1639486769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1637635658&rft_id=info:pmid/25433639&rft_els_id=S089662731401006X&rfr_iscdi=true