Pervasive Axonal Transport Deficits in Multiple Sclerosis Models
Impaired axonal transport can contribute to axon degeneration and has been described in many neurodegenerative diseases. Multiple sclerosis (MS) is a common neuroinflammatory disease, which is characterized by progressive axon degeneration—whether, when, and how axonal transport is affected in this...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2014-12, Vol.84 (6), p.1183-1190 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1190 |
---|---|
container_issue | 6 |
container_start_page | 1183 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 84 |
creator | Sorbara, Catherine Diamante Wagner, Naomi Elizabeth Ladwig, Anne Nikić, Ivana Merkler, Doron Kleele, Tatjana Marinković, Petar Naumann, Ronald Godinho, Leanne Bareyre, Florence Martine Bishop, Derron Misgeld, Thomas Kerschensteiner, Martin |
description | Impaired axonal transport can contribute to axon degeneration and has been described in many neurodegenerative diseases. Multiple sclerosis (MS) is a common neuroinflammatory disease, which is characterized by progressive axon degeneration—whether, when, and how axonal transport is affected in this condition is unknown. Here we used in vivo two-photon imaging to directly assay transport of organelles and the stability of microtubule tracks in individual spinal axons in mouse models of MS. We found widespread transport deficits, which preceded structural alterations of axons, cargos, or microtubules and could be reversed by acute anti-inflammatory interventions or redox scavenging. Our study shows that acute neuroinflammation induces a pervasive state of reversible axonal dysfunction, which coincides with acute disease symptoms. Moreover, perpetuated transport dysfunction, as we found in a model of progressive MS, led to reduced distal organelle supply and could thus contribute to axonal dystrophy in advanced stages of the disease.
•In vivo imaging reveals widespread impairment of organelle transport in MS models•Transport deficits precede structural alterations of axons, myelin, or microtubules•In chronic but not in acute MS models, this reduces distal organelle density•Redox scavenging improves transport impairments in neuroinflammatory lesions
Sorbara et al. image the movement of individual organelles in spinal axons of mice to show that axonal transport arrests in axons within neuroinflammatory lesions. This identifies a reversible stage of axon dysfunction that precedes structural axon damage. |
doi_str_mv | 10.1016/j.neuron.2014.11.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1647012554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731401006X</els_id><sourcerecordid>1639486769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-6cf28aa4d52605e383d30a22d544211bec0c6b8b0d1a56742f4059e4595711f3</originalsourceid><addsrcrecordid>eNqFkUtv2zAQhImgQeKk_QdFIKCXXKRw-ZJ4KWokzQOwkQL1naCpFUBDFh1SMpp_H6ZOe-ihOe3lm9ndGUI-A62AgrraVANOMQwVoyAqgIpSdURmQHVdCtD6A5nRRqtSsZqfkrOUNjSDUsMJOWVScK64npFvPzDubfJ7LOa_wmD7YhXtkHYhjsUNdt75MRV-KJZTP_pdj8VP12MMyadiGVrs00dy3Nk-4ae3eU5Wt99X1_fl4vHu4Xq-KJ3keiyV61hjrWglU1Qib3jLqWWslUIwgDU66tS6WdMWrFS1YJ2gUmO-V9YAHT8nlwfbXQxPE6bRbH1y2Pd2wDAlA0rUFJjMj72Pci0aVSud0S__oJswxZzCb6pWXCrZZEocKJcfTxE7s4t-a-OzAWpeuzAbc-jCvHZhAEzuIssu3syn9Rbbv6I_4Wfg6wHIMeLeYzTJeRwctj6iG00b_P83vACk7Jod</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1637635658</pqid></control><display><type>article</type><title>Pervasive Axonal Transport Deficits in Multiple Sclerosis Models</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sorbara, Catherine Diamante ; Wagner, Naomi Elizabeth ; Ladwig, Anne ; Nikić, Ivana ; Merkler, Doron ; Kleele, Tatjana ; Marinković, Petar ; Naumann, Ronald ; Godinho, Leanne ; Bareyre, Florence Martine ; Bishop, Derron ; Misgeld, Thomas ; Kerschensteiner, Martin</creator><creatorcontrib>Sorbara, Catherine Diamante ; Wagner, Naomi Elizabeth ; Ladwig, Anne ; Nikić, Ivana ; Merkler, Doron ; Kleele, Tatjana ; Marinković, Petar ; Naumann, Ronald ; Godinho, Leanne ; Bareyre, Florence Martine ; Bishop, Derron ; Misgeld, Thomas ; Kerschensteiner, Martin</creatorcontrib><description>Impaired axonal transport can contribute to axon degeneration and has been described in many neurodegenerative diseases. Multiple sclerosis (MS) is a common neuroinflammatory disease, which is characterized by progressive axon degeneration—whether, when, and how axonal transport is affected in this condition is unknown. Here we used in vivo two-photon imaging to directly assay transport of organelles and the stability of microtubule tracks in individual spinal axons in mouse models of MS. We found widespread transport deficits, which preceded structural alterations of axons, cargos, or microtubules and could be reversed by acute anti-inflammatory interventions or redox scavenging. Our study shows that acute neuroinflammation induces a pervasive state of reversible axonal dysfunction, which coincides with acute disease symptoms. Moreover, perpetuated transport dysfunction, as we found in a model of progressive MS, led to reduced distal organelle supply and could thus contribute to axonal dystrophy in advanced stages of the disease.
•In vivo imaging reveals widespread impairment of organelle transport in MS models•Transport deficits precede structural alterations of axons, myelin, or microtubules•In chronic but not in acute MS models, this reduces distal organelle density•Redox scavenging improves transport impairments in neuroinflammatory lesions
Sorbara et al. image the movement of individual organelles in spinal axons of mice to show that axonal transport arrests in axons within neuroinflammatory lesions. This identifies a reversible stage of axon dysfunction that precedes structural axon damage.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2014.11.006</identifier><identifier>PMID: 25433639</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Axonal Transport - drug effects ; Axonal Transport - physiology ; Axons - physiology ; Cytoskeleton ; Disease ; Disease Models, Animal ; Free Radical Scavengers - pharmacology ; Functional Neuroimaging ; Mice ; Microscopy ; Microtubules - physiology ; Mitochondria ; Multiple Sclerosis - pathology ; Multiple Sclerosis - physiopathology ; Mutation ; Nerve Degeneration - physiopathology ; Neurodegeneration ; Nitric Oxide Donors - pharmacology ; Organelles - physiology ; Rodents ; Spermine - analogs & derivatives ; Spermine - pharmacology ; Spinal Cord - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2014-12, Vol.84 (6), p.1183-1190</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 17, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-6cf28aa4d52605e383d30a22d544211bec0c6b8b0d1a56742f4059e4595711f3</citedby><cites>FETCH-LOGICAL-c539t-6cf28aa4d52605e383d30a22d544211bec0c6b8b0d1a56742f4059e4595711f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089662731401006X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25433639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sorbara, Catherine Diamante</creatorcontrib><creatorcontrib>Wagner, Naomi Elizabeth</creatorcontrib><creatorcontrib>Ladwig, Anne</creatorcontrib><creatorcontrib>Nikić, Ivana</creatorcontrib><creatorcontrib>Merkler, Doron</creatorcontrib><creatorcontrib>Kleele, Tatjana</creatorcontrib><creatorcontrib>Marinković, Petar</creatorcontrib><creatorcontrib>Naumann, Ronald</creatorcontrib><creatorcontrib>Godinho, Leanne</creatorcontrib><creatorcontrib>Bareyre, Florence Martine</creatorcontrib><creatorcontrib>Bishop, Derron</creatorcontrib><creatorcontrib>Misgeld, Thomas</creatorcontrib><creatorcontrib>Kerschensteiner, Martin</creatorcontrib><title>Pervasive Axonal Transport Deficits in Multiple Sclerosis Models</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Impaired axonal transport can contribute to axon degeneration and has been described in many neurodegenerative diseases. Multiple sclerosis (MS) is a common neuroinflammatory disease, which is characterized by progressive axon degeneration—whether, when, and how axonal transport is affected in this condition is unknown. Here we used in vivo two-photon imaging to directly assay transport of organelles and the stability of microtubule tracks in individual spinal axons in mouse models of MS. We found widespread transport deficits, which preceded structural alterations of axons, cargos, or microtubules and could be reversed by acute anti-inflammatory interventions or redox scavenging. Our study shows that acute neuroinflammation induces a pervasive state of reversible axonal dysfunction, which coincides with acute disease symptoms. Moreover, perpetuated transport dysfunction, as we found in a model of progressive MS, led to reduced distal organelle supply and could thus contribute to axonal dystrophy in advanced stages of the disease.
•In vivo imaging reveals widespread impairment of organelle transport in MS models•Transport deficits precede structural alterations of axons, myelin, or microtubules•In chronic but not in acute MS models, this reduces distal organelle density•Redox scavenging improves transport impairments in neuroinflammatory lesions
Sorbara et al. image the movement of individual organelles in spinal axons of mice to show that axonal transport arrests in axons within neuroinflammatory lesions. This identifies a reversible stage of axon dysfunction that precedes structural axon damage.</description><subject>Animals</subject><subject>Axonal Transport - drug effects</subject><subject>Axonal Transport - physiology</subject><subject>Axons - physiology</subject><subject>Cytoskeleton</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Free Radical Scavengers - pharmacology</subject><subject>Functional Neuroimaging</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microtubules - physiology</subject><subject>Mitochondria</subject><subject>Multiple Sclerosis - pathology</subject><subject>Multiple Sclerosis - physiopathology</subject><subject>Mutation</subject><subject>Nerve Degeneration - physiopathology</subject><subject>Neurodegeneration</subject><subject>Nitric Oxide Donors - pharmacology</subject><subject>Organelles - physiology</subject><subject>Rodents</subject><subject>Spermine - analogs & derivatives</subject><subject>Spermine - pharmacology</subject><subject>Spinal Cord - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv2zAQhImgQeKk_QdFIKCXXKRw-ZJ4KWokzQOwkQL1naCpFUBDFh1SMpp_H6ZOe-ihOe3lm9ndGUI-A62AgrraVANOMQwVoyAqgIpSdURmQHVdCtD6A5nRRqtSsZqfkrOUNjSDUsMJOWVScK64npFvPzDubfJ7LOa_wmD7YhXtkHYhjsUNdt75MRV-KJZTP_pdj8VP12MMyadiGVrs00dy3Nk-4ae3eU5Wt99X1_fl4vHu4Xq-KJ3keiyV61hjrWglU1Qib3jLqWWslUIwgDU66tS6WdMWrFS1YJ2gUmO-V9YAHT8nlwfbXQxPE6bRbH1y2Pd2wDAlA0rUFJjMj72Pci0aVSud0S__oJswxZzCb6pWXCrZZEocKJcfTxE7s4t-a-OzAWpeuzAbc-jCvHZhAEzuIssu3syn9Rbbv6I_4Wfg6wHIMeLeYzTJeRwctj6iG00b_P83vACk7Jod</recordid><startdate>20141217</startdate><enddate>20141217</enddate><creator>Sorbara, Catherine Diamante</creator><creator>Wagner, Naomi Elizabeth</creator><creator>Ladwig, Anne</creator><creator>Nikić, Ivana</creator><creator>Merkler, Doron</creator><creator>Kleele, Tatjana</creator><creator>Marinković, Petar</creator><creator>Naumann, Ronald</creator><creator>Godinho, Leanne</creator><creator>Bareyre, Florence Martine</creator><creator>Bishop, Derron</creator><creator>Misgeld, Thomas</creator><creator>Kerschensteiner, Martin</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20141217</creationdate><title>Pervasive Axonal Transport Deficits in Multiple Sclerosis Models</title><author>Sorbara, Catherine Diamante ; Wagner, Naomi Elizabeth ; Ladwig, Anne ; Nikić, Ivana ; Merkler, Doron ; Kleele, Tatjana ; Marinković, Petar ; Naumann, Ronald ; Godinho, Leanne ; Bareyre, Florence Martine ; Bishop, Derron ; Misgeld, Thomas ; Kerschensteiner, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-6cf28aa4d52605e383d30a22d544211bec0c6b8b0d1a56742f4059e4595711f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Axonal Transport - drug effects</topic><topic>Axonal Transport - physiology</topic><topic>Axons - physiology</topic><topic>Cytoskeleton</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Free Radical Scavengers - pharmacology</topic><topic>Functional Neuroimaging</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microtubules - physiology</topic><topic>Mitochondria</topic><topic>Multiple Sclerosis - pathology</topic><topic>Multiple Sclerosis - physiopathology</topic><topic>Mutation</topic><topic>Nerve Degeneration - physiopathology</topic><topic>Neurodegeneration</topic><topic>Nitric Oxide Donors - pharmacology</topic><topic>Organelles - physiology</topic><topic>Rodents</topic><topic>Spermine - analogs & derivatives</topic><topic>Spermine - pharmacology</topic><topic>Spinal Cord - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorbara, Catherine Diamante</creatorcontrib><creatorcontrib>Wagner, Naomi Elizabeth</creatorcontrib><creatorcontrib>Ladwig, Anne</creatorcontrib><creatorcontrib>Nikić, Ivana</creatorcontrib><creatorcontrib>Merkler, Doron</creatorcontrib><creatorcontrib>Kleele, Tatjana</creatorcontrib><creatorcontrib>Marinković, Petar</creatorcontrib><creatorcontrib>Naumann, Ronald</creatorcontrib><creatorcontrib>Godinho, Leanne</creatorcontrib><creatorcontrib>Bareyre, Florence Martine</creatorcontrib><creatorcontrib>Bishop, Derron</creatorcontrib><creatorcontrib>Misgeld, Thomas</creatorcontrib><creatorcontrib>Kerschensteiner, Martin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorbara, Catherine Diamante</au><au>Wagner, Naomi Elizabeth</au><au>Ladwig, Anne</au><au>Nikić, Ivana</au><au>Merkler, Doron</au><au>Kleele, Tatjana</au><au>Marinković, Petar</au><au>Naumann, Ronald</au><au>Godinho, Leanne</au><au>Bareyre, Florence Martine</au><au>Bishop, Derron</au><au>Misgeld, Thomas</au><au>Kerschensteiner, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pervasive Axonal Transport Deficits in Multiple Sclerosis Models</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-12-17</date><risdate>2014</risdate><volume>84</volume><issue>6</issue><spage>1183</spage><epage>1190</epage><pages>1183-1190</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Impaired axonal transport can contribute to axon degeneration and has been described in many neurodegenerative diseases. Multiple sclerosis (MS) is a common neuroinflammatory disease, which is characterized by progressive axon degeneration—whether, when, and how axonal transport is affected in this condition is unknown. Here we used in vivo two-photon imaging to directly assay transport of organelles and the stability of microtubule tracks in individual spinal axons in mouse models of MS. We found widespread transport deficits, which preceded structural alterations of axons, cargos, or microtubules and could be reversed by acute anti-inflammatory interventions or redox scavenging. Our study shows that acute neuroinflammation induces a pervasive state of reversible axonal dysfunction, which coincides with acute disease symptoms. Moreover, perpetuated transport dysfunction, as we found in a model of progressive MS, led to reduced distal organelle supply and could thus contribute to axonal dystrophy in advanced stages of the disease.
•In vivo imaging reveals widespread impairment of organelle transport in MS models•Transport deficits precede structural alterations of axons, myelin, or microtubules•In chronic but not in acute MS models, this reduces distal organelle density•Redox scavenging improves transport impairments in neuroinflammatory lesions
Sorbara et al. image the movement of individual organelles in spinal axons of mice to show that axonal transport arrests in axons within neuroinflammatory lesions. This identifies a reversible stage of axon dysfunction that precedes structural axon damage.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25433639</pmid><doi>10.1016/j.neuron.2014.11.006</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2014-12, Vol.84 (6), p.1183-1190 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1647012554 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Axonal Transport - drug effects Axonal Transport - physiology Axons - physiology Cytoskeleton Disease Disease Models, Animal Free Radical Scavengers - pharmacology Functional Neuroimaging Mice Microscopy Microtubules - physiology Mitochondria Multiple Sclerosis - pathology Multiple Sclerosis - physiopathology Mutation Nerve Degeneration - physiopathology Neurodegeneration Nitric Oxide Donors - pharmacology Organelles - physiology Rodents Spermine - analogs & derivatives Spermine - pharmacology Spinal Cord - physiology |
title | Pervasive Axonal Transport Deficits in Multiple Sclerosis Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pervasive%20Axonal%20Transport%20Deficits%20in%20Multiple%20Sclerosis%20Models&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Sorbara,%20Catherine%C2%A0Diamante&rft.date=2014-12-17&rft.volume=84&rft.issue=6&rft.spage=1183&rft.epage=1190&rft.pages=1183-1190&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2014.11.006&rft_dat=%3Cproquest_cross%3E1639486769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1637635658&rft_id=info:pmid/25433639&rft_els_id=S089662731401006X&rfr_iscdi=true |