High-resolution mapping and new marker development for adult plant stripe rust resistance QTL in the wheat cultivar Kariega
Three major quantitative trait loci (QTL) contribute to the durable adult plant stripe rust resistance in the high-quality bread wheat cultivar Kariega; QYr.sgi-2B.1 and QYr.sgi-4A.1, and the pleiotropic resistance gene Lr34/Yr18/Sr57. While marker-assisted selection is currently being used to incor...
Gespeichert in:
Veröffentlicht in: | Molecular breeding 2014-12, Vol.34 (4), p.2005-2020 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2020 |
---|---|
container_issue | 4 |
container_start_page | 2005 |
container_title | Molecular breeding |
container_volume | 34 |
creator | Agenbag, G. M Pretorius, Z. A Boyd, L. A Bender, C. M MacCormack, R Prins, R |
description | Three major quantitative trait loci (QTL) contribute to the durable adult plant stripe rust resistance in the high-quality bread wheat cultivar Kariega; QYr.sgi-2B.1 and QYr.sgi-4A.1, and the pleiotropic resistance gene Lr34/Yr18/Sr57. While marker-assisted selection is currently being used to incorporate the Kariega stripe rust adult plant resistance into new South African wheat breeding lines, effective selection of the large QTL intervals remains a challenging task. In this study, we describe the development of expressed sequence tag (EST)-derived markers as an effective strategy for increasing the marker density in the selected QTL intervals and the conversion of Diversity Arrays Technology (DArT) and EST-derived markers to sequence tagged site (STS) markers to enable high-throughput screening. To reduce the QTL intervals, a high-resolution mapping population was developed, consisting of 1,020 F₂individuals, from the cross Kariega × Avocet S. Through recombinant selection, QYr.sgi-2B.1 was shown to reside within a 6.1 cM interval on the short arm of chromosome 2B, between marker loci Xbarc55 and Xwmc344, a reduction from the previous interval size of 23 cM. Previously, QYr.sgi-4A.1 was poorly defined, but by mapping selected recombinants for the QYr.sgi-4A.1 interval, the QTL region was narrowed to a 16.3-cM interval between marker loci Xbarc78, Xwmc313 and Xwmc219 on the long arm of chromosome 4A. An EST-STS marker, Xufs1-4A, was also developed for QYr.sgi-4A.1, which improved selection for this slow-rusting QTL. The EST marker strategy was useful in increasing marker density and contributed to improved selection for the Kariega QTL in resistance breeding. In addition, BC₄F₂families were developed to study the expression of QYr.sgi-2B.1 and QYr.sgi-4A.1 individually, and in combination with Lr34/Yr18/Sr57 in the common, stripe rust susceptible background of Avocet S. |
doi_str_mv | 10.1007/s11032-014-0158-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1647001639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1647001639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-f2f3f5e9a14b68a780b08766db83d63b53265ac134c0404761a2f8f7a64e07be3</originalsourceid><addsrcrecordid>eNp9kU-L1TAUxYsoOI5-AFcG3Lip5l-TdCmD44gPRJxZh7S96cvYl9QknUH88t6hguDCRUguOb_D4Z6mecnoW0apflcYo4K3lEk8nWnlo-aMdZq3vTbmMb6Foa3QUjxtnpVyS5HplTprfl2F-dhmKGnZakiRnNy6hjgTFycS4R7n_B0ymeAOlrSeIFbiUyZu2pZK1sXhXGoOK5C8lUrQKZTq4gjk6_WBhEjqEcj9EVwlIyLhzmXy2eUAs3vePPFuKfDiz33e3Fx-uL64ag9fPn66eH9oRylFbT33wnfQOyYHZZw2dKBGKzUNRkxKDJ3gqnMjE3KkkkqtmOPeeO2UBKoHEOfNm913zenHBqXaUygjLBge0lYsU1JTypToUfr6H-lt2nLEdJbzru-oVkahiu2qMadSMni75oCL-mkZtQ912L0Oi3XYhzqsRIbvTEFtnCH_df4f9GqHvEvWzTkUe_ON4yfGpZiHid-ZopbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259507686</pqid></control><display><type>article</type><title>High-resolution mapping and new marker development for adult plant stripe rust resistance QTL in the wheat cultivar Kariega</title><source>SpringerLink Journals - AutoHoldings</source><creator>Agenbag, G. M ; Pretorius, Z. A ; Boyd, L. A ; Bender, C. M ; MacCormack, R ; Prins, R</creator><creatorcontrib>Agenbag, G. M ; Pretorius, Z. A ; Boyd, L. A ; Bender, C. M ; MacCormack, R ; Prins, R</creatorcontrib><description>Three major quantitative trait loci (QTL) contribute to the durable adult plant stripe rust resistance in the high-quality bread wheat cultivar Kariega; QYr.sgi-2B.1 and QYr.sgi-4A.1, and the pleiotropic resistance gene Lr34/Yr18/Sr57. While marker-assisted selection is currently being used to incorporate the Kariega stripe rust adult plant resistance into new South African wheat breeding lines, effective selection of the large QTL intervals remains a challenging task. In this study, we describe the development of expressed sequence tag (EST)-derived markers as an effective strategy for increasing the marker density in the selected QTL intervals and the conversion of Diversity Arrays Technology (DArT) and EST-derived markers to sequence tagged site (STS) markers to enable high-throughput screening. To reduce the QTL intervals, a high-resolution mapping population was developed, consisting of 1,020 F₂individuals, from the cross Kariega × Avocet S. Through recombinant selection, QYr.sgi-2B.1 was shown to reside within a 6.1 cM interval on the short arm of chromosome 2B, between marker loci Xbarc55 and Xwmc344, a reduction from the previous interval size of 23 cM. Previously, QYr.sgi-4A.1 was poorly defined, but by mapping selected recombinants for the QYr.sgi-4A.1 interval, the QTL region was narrowed to a 16.3-cM interval between marker loci Xbarc78, Xwmc313 and Xwmc219 on the long arm of chromosome 4A. An EST-STS marker, Xufs1-4A, was also developed for QYr.sgi-4A.1, which improved selection for this slow-rusting QTL. The EST marker strategy was useful in increasing marker density and contributed to improved selection for the Kariega QTL in resistance breeding. In addition, BC₄F₂families were developed to study the expression of QYr.sgi-2B.1 and QYr.sgi-4A.1 individually, and in combination with Lr34/Yr18/Sr57 in the common, stripe rust susceptible background of Avocet S.</description><identifier>ISSN: 1380-3743</identifier><identifier>EISSN: 1572-9788</identifier><identifier>DOI: 10.1007/s11032-014-0158-4</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>adult development ; Biomedical and Life Sciences ; Biotechnology ; Bread ; breeding lines ; chromosome mapping ; Chromosomes ; Cultivars ; Density ; disease resistance ; Expressed sequence tags ; Gene mapping ; genes ; High resolution ; High-throughput screening ; Intervals ; Life Sciences ; loci ; Mapping ; Marker-assisted selection ; Markers ; mature plants ; Molecular biology ; Plant biology ; Plant breeding ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant resistance ; Plant Sciences ; Quantitative trait loci ; Recombinants ; screening ; Stripe rust ; Triticum aestivum ; Wheat</subject><ispartof>Molecular breeding, 2014-12, Vol.34 (4), p.2005-2020</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Molecular Breeding is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-f2f3f5e9a14b68a780b08766db83d63b53265ac134c0404761a2f8f7a64e07be3</citedby><cites>FETCH-LOGICAL-c443t-f2f3f5e9a14b68a780b08766db83d63b53265ac134c0404761a2f8f7a64e07be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11032-014-0158-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11032-014-0158-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Agenbag, G. M</creatorcontrib><creatorcontrib>Pretorius, Z. A</creatorcontrib><creatorcontrib>Boyd, L. A</creatorcontrib><creatorcontrib>Bender, C. M</creatorcontrib><creatorcontrib>MacCormack, R</creatorcontrib><creatorcontrib>Prins, R</creatorcontrib><title>High-resolution mapping and new marker development for adult plant stripe rust resistance QTL in the wheat cultivar Kariega</title><title>Molecular breeding</title><addtitle>Mol Breeding</addtitle><description>Three major quantitative trait loci (QTL) contribute to the durable adult plant stripe rust resistance in the high-quality bread wheat cultivar Kariega; QYr.sgi-2B.1 and QYr.sgi-4A.1, and the pleiotropic resistance gene Lr34/Yr18/Sr57. While marker-assisted selection is currently being used to incorporate the Kariega stripe rust adult plant resistance into new South African wheat breeding lines, effective selection of the large QTL intervals remains a challenging task. In this study, we describe the development of expressed sequence tag (EST)-derived markers as an effective strategy for increasing the marker density in the selected QTL intervals and the conversion of Diversity Arrays Technology (DArT) and EST-derived markers to sequence tagged site (STS) markers to enable high-throughput screening. To reduce the QTL intervals, a high-resolution mapping population was developed, consisting of 1,020 F₂individuals, from the cross Kariega × Avocet S. Through recombinant selection, QYr.sgi-2B.1 was shown to reside within a 6.1 cM interval on the short arm of chromosome 2B, between marker loci Xbarc55 and Xwmc344, a reduction from the previous interval size of 23 cM. Previously, QYr.sgi-4A.1 was poorly defined, but by mapping selected recombinants for the QYr.sgi-4A.1 interval, the QTL region was narrowed to a 16.3-cM interval between marker loci Xbarc78, Xwmc313 and Xwmc219 on the long arm of chromosome 4A. An EST-STS marker, Xufs1-4A, was also developed for QYr.sgi-4A.1, which improved selection for this slow-rusting QTL. The EST marker strategy was useful in increasing marker density and contributed to improved selection for the Kariega QTL in resistance breeding. In addition, BC₄F₂families were developed to study the expression of QYr.sgi-2B.1 and QYr.sgi-4A.1 individually, and in combination with Lr34/Yr18/Sr57 in the common, stripe rust susceptible background of Avocet S.</description><subject>adult development</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bread</subject><subject>breeding lines</subject><subject>chromosome mapping</subject><subject>Chromosomes</subject><subject>Cultivars</subject><subject>Density</subject><subject>disease resistance</subject><subject>Expressed sequence tags</subject><subject>Gene mapping</subject><subject>genes</subject><subject>High resolution</subject><subject>High-throughput screening</subject><subject>Intervals</subject><subject>Life Sciences</subject><subject>loci</subject><subject>Mapping</subject><subject>Marker-assisted selection</subject><subject>Markers</subject><subject>mature plants</subject><subject>Molecular biology</subject><subject>Plant biology</subject><subject>Plant breeding</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant resistance</subject><subject>Plant Sciences</subject><subject>Quantitative trait loci</subject><subject>Recombinants</subject><subject>screening</subject><subject>Stripe rust</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>1380-3743</issn><issn>1572-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU-L1TAUxYsoOI5-AFcG3Lip5l-TdCmD44gPRJxZh7S96cvYl9QknUH88t6hguDCRUguOb_D4Z6mecnoW0apflcYo4K3lEk8nWnlo-aMdZq3vTbmMb6Foa3QUjxtnpVyS5HplTprfl2F-dhmKGnZakiRnNy6hjgTFycS4R7n_B0ymeAOlrSeIFbiUyZu2pZK1sXhXGoOK5C8lUrQKZTq4gjk6_WBhEjqEcj9EVwlIyLhzmXy2eUAs3vePPFuKfDiz33e3Fx-uL64ag9fPn66eH9oRylFbT33wnfQOyYHZZw2dKBGKzUNRkxKDJ3gqnMjE3KkkkqtmOPeeO2UBKoHEOfNm913zenHBqXaUygjLBge0lYsU1JTypToUfr6H-lt2nLEdJbzru-oVkahiu2qMadSMni75oCL-mkZtQ912L0Oi3XYhzqsRIbvTEFtnCH_df4f9GqHvEvWzTkUe_ON4yfGpZiHid-ZopbQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Agenbag, G. M</creator><creator>Pretorius, Z. A</creator><creator>Boyd, L. A</creator><creator>Bender, C. M</creator><creator>MacCormack, R</creator><creator>Prins, R</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20141201</creationdate><title>High-resolution mapping and new marker development for adult plant stripe rust resistance QTL in the wheat cultivar Kariega</title><author>Agenbag, G. M ; Pretorius, Z. A ; Boyd, L. A ; Bender, C. M ; MacCormack, R ; Prins, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-f2f3f5e9a14b68a780b08766db83d63b53265ac134c0404761a2f8f7a64e07be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adult development</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bread</topic><topic>breeding lines</topic><topic>chromosome mapping</topic><topic>Chromosomes</topic><topic>Cultivars</topic><topic>Density</topic><topic>disease resistance</topic><topic>Expressed sequence tags</topic><topic>Gene mapping</topic><topic>genes</topic><topic>High resolution</topic><topic>High-throughput screening</topic><topic>Intervals</topic><topic>Life Sciences</topic><topic>loci</topic><topic>Mapping</topic><topic>Marker-assisted selection</topic><topic>Markers</topic><topic>mature plants</topic><topic>Molecular biology</topic><topic>Plant biology</topic><topic>Plant breeding</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant resistance</topic><topic>Plant Sciences</topic><topic>Quantitative trait loci</topic><topic>Recombinants</topic><topic>screening</topic><topic>Stripe rust</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agenbag, G. M</creatorcontrib><creatorcontrib>Pretorius, Z. A</creatorcontrib><creatorcontrib>Boyd, L. A</creatorcontrib><creatorcontrib>Bender, C. M</creatorcontrib><creatorcontrib>MacCormack, R</creatorcontrib><creatorcontrib>Prins, R</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agenbag, G. M</au><au>Pretorius, Z. A</au><au>Boyd, L. A</au><au>Bender, C. M</au><au>MacCormack, R</au><au>Prins, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution mapping and new marker development for adult plant stripe rust resistance QTL in the wheat cultivar Kariega</atitle><jtitle>Molecular breeding</jtitle><stitle>Mol Breeding</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>34</volume><issue>4</issue><spage>2005</spage><epage>2020</epage><pages>2005-2020</pages><issn>1380-3743</issn><eissn>1572-9788</eissn><abstract>Three major quantitative trait loci (QTL) contribute to the durable adult plant stripe rust resistance in the high-quality bread wheat cultivar Kariega; QYr.sgi-2B.1 and QYr.sgi-4A.1, and the pleiotropic resistance gene Lr34/Yr18/Sr57. While marker-assisted selection is currently being used to incorporate the Kariega stripe rust adult plant resistance into new South African wheat breeding lines, effective selection of the large QTL intervals remains a challenging task. In this study, we describe the development of expressed sequence tag (EST)-derived markers as an effective strategy for increasing the marker density in the selected QTL intervals and the conversion of Diversity Arrays Technology (DArT) and EST-derived markers to sequence tagged site (STS) markers to enable high-throughput screening. To reduce the QTL intervals, a high-resolution mapping population was developed, consisting of 1,020 F₂individuals, from the cross Kariega × Avocet S. Through recombinant selection, QYr.sgi-2B.1 was shown to reside within a 6.1 cM interval on the short arm of chromosome 2B, between marker loci Xbarc55 and Xwmc344, a reduction from the previous interval size of 23 cM. Previously, QYr.sgi-4A.1 was poorly defined, but by mapping selected recombinants for the QYr.sgi-4A.1 interval, the QTL region was narrowed to a 16.3-cM interval between marker loci Xbarc78, Xwmc313 and Xwmc219 on the long arm of chromosome 4A. An EST-STS marker, Xufs1-4A, was also developed for QYr.sgi-4A.1, which improved selection for this slow-rusting QTL. The EST marker strategy was useful in increasing marker density and contributed to improved selection for the Kariega QTL in resistance breeding. In addition, BC₄F₂families were developed to study the expression of QYr.sgi-2B.1 and QYr.sgi-4A.1 individually, and in combination with Lr34/Yr18/Sr57 in the common, stripe rust susceptible background of Avocet S.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s11032-014-0158-4</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-3743 |
ispartof | Molecular breeding, 2014-12, Vol.34 (4), p.2005-2020 |
issn | 1380-3743 1572-9788 |
language | eng |
recordid | cdi_proquest_miscellaneous_1647001639 |
source | SpringerLink Journals - AutoHoldings |
subjects | adult development Biomedical and Life Sciences Biotechnology Bread breeding lines chromosome mapping Chromosomes Cultivars Density disease resistance Expressed sequence tags Gene mapping genes High resolution High-throughput screening Intervals Life Sciences loci Mapping Marker-assisted selection Markers mature plants Molecular biology Plant biology Plant breeding Plant Genetics and Genomics Plant Pathology Plant Physiology Plant resistance Plant Sciences Quantitative trait loci Recombinants screening Stripe rust Triticum aestivum Wheat |
title | High-resolution mapping and new marker development for adult plant stripe rust resistance QTL in the wheat cultivar Kariega |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20mapping%20and%20new%20marker%20development%20for%20adult%20plant%20stripe%20rust%20resistance%20QTL%20in%20the%20wheat%20cultivar%20Kariega&rft.jtitle=Molecular%20breeding&rft.au=Agenbag,%20G.%20M&rft.date=2014-12-01&rft.volume=34&rft.issue=4&rft.spage=2005&rft.epage=2020&rft.pages=2005-2020&rft.issn=1380-3743&rft.eissn=1572-9788&rft_id=info:doi/10.1007/s11032-014-0158-4&rft_dat=%3Cproquest_cross%3E1647001639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259507686&rft_id=info:pmid/&rfr_iscdi=true |