Development and morphology of rostral cartilages in batoid fishes (Chondrichthyes: Batoidea), with comments on homology within vertebrates

The rostral cartilages of batoid fishes were examined to elucidate their development, morphology and homology. Comparison of a variety of rostral cartilages among elasmobranchs with other groups of vertebrates shows that rostral cartilages originate embryologically from the trabecula and/or lamina o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological journal of the Linnean Society 1992-06, Vol.46 (3), p.259-298
Hauptverfasser: MIYAKE, TSUTOMU, McEACHRAN, JOHN D., WALTON, PETER J., HALL, BRIAN K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rostral cartilages of batoid fishes were examined to elucidate their development, morphology and homology. Comparison of a variety of rostral cartilages among elasmobranchs with other groups of vertebrates shows that rostral cartilages originate embryologically from the trabecula and/or lamina orbitonasalis. Because different morphogenetic patterns of the derivatives of the two embryonic cartilages give rise to a wide variety of forms of rostral cartilages even within elasmobranchs, and because morphogenesis involves complex interactions among participating structures in the ethmo‐orbital area, we put forward conceptual and empirical discussions to elucidate the homology of the rostral cartilages in batoid fishes. With six assumptions given in this study and based on recent discussions of biological and historical homology, our discussions centre on: (1) recognition of complex interactions of participating biological entities in development and evolution; (2) elucidation of a set of interacting biological and evolutionary factors to define a given morphological structure; (3) assessment of causal explanations for similarities or differences between homologous structures by determining genetic, epigenetic and evolutionary factors. Examples of conceptual approaches are given to make the approaches testable. Although a paucity of knowledge of rostral cartilage formation is the major obstacle to thorough analysis of the conceptual framework, several tentative conclusions are made on the homology of rostral cartilages that will hopefully attract more research on development and evolution in vertebrate morphology. These are: (1) the rostral cartilage in each group of vertebrates examined can be defined by both developmentally associated and adult structural attributes, yet such data do not allow us to assess homology of a variety of forms of rostral cartilages at higher taxonomic categories; (2) the entire rostral cartilage in elasmobranchs is formed by the contribution of the embryonic trabecula and lamina orbitonasalis. The status of the development and homology of the rostral cartilage in holocephalans remains uncertain; (3) there is no simple picture of evolution of rostral cartilages among three putative monophyletic assemblages of elasmobranchs, galeomorphs, squaloids (possibly plus Squatina, Chlamydoselachus and hexanchoids as the orbitostylic group) and batoid fishes. It is highly likely that rostral cartilages in each subgroup or subgroups of these
ISSN:0024-4066
1095-8312
DOI:10.1111/j.1095-8312.1992.tb00864.x