Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli

To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET systems biology 2015-02, Vol.9 (1), p.25-30
Hauptverfasser: Cui, Fangshu, Yuan, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 25
container_title IET systems biology
container_volume 9
creator Cui, Fangshu
Yuan, Bo
description To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term experiment with Escherichia coli, the authors present three mathematical approximations to the Wright–Fisher model of the morphological evolution. They firstly use a deterministic approximation, which fails to predict evolutionary dynamics of cell size and proves the importance of stochasticity in large populations. Then, they develop a stochastic approximation and derive an analytic expression for the anticipated waiting time to reach the stability of cell size. The results show that the calculation of this waiting time is in good agreement with the experimental data and that the selective advantage plays a prominent role in cell size evolution, with mutation rate and population size having less impact. Finally, they employ a multistep process to approximate the Wright–Fisher model of cell size evolution and acquire an analytical formula for the median waiting time until the stability of cell size. This median time supports the idea that the selective advantage is the dominant force for the morphological evolution in the long-term experiment.
doi_str_mv 10.1049/iet-syb.2013.0059
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1645775824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808095486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5406-1ed3e6fde2d83de89ec990c4723d1156701fb78dada2faceb19cae8641207a373</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEoqXwAFyQj3DIYjtxbHNAaqttqVSJA-XAyTj2ZOPKiZc4acnb42jbVZEQe_LI_ub3jL4se0vwiuBSfnQw5nGuVxSTYoUxk8-yY8IZyYVg_Pm-LuVR9irG20SwiuGX2RFNhRQVOc5-ru-Cn0YXej3MyM697pyJKDSoC8O2DT5snNEexVHXzrtxRq5HGvnQb_IRhg7B7y0MroN-RPdubNE6mjZdmNZpZIJ3r7MXjfYR3jycJ9n3i_XN-Zf8-uvl1fnpdW5YiaucgC2gaixQKwoLQoKREpuS08ISwiqOSVNzYbXVtNEGaiKNBlGVhGKuC16cZJ93udup7sCaNNCgvdqm2dJmKmin_n7pXas24U6JSnDKZAp4_xAwhF8TxFF1LhrwXvcQpqiIwAJLVorqMMoFowWTSctBtCoZ50zQMqFkh5ohxDhAsx-eYLX4Vsm3Sr7V4lstvlPPu6db7zseBSfg0w64dx7mw4nq248zenaBMcHLnvmuecFuwzT0yeB_p_nwD_5qfbOkPvlja5viD_3t2QI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645775824</pqid></control><display><type>article</type><title>Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli</title><source>Wiley-Blackwell Open Access Collection</source><creator>Cui, Fangshu ; Yuan, Bo</creator><creatorcontrib>Cui, Fangshu ; Yuan, Bo</creatorcontrib><description>To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term experiment with Escherichia coli, the authors present three mathematical approximations to the Wright–Fisher model of the morphological evolution. They firstly use a deterministic approximation, which fails to predict evolutionary dynamics of cell size and proves the importance of stochasticity in large populations. Then, they develop a stochastic approximation and derive an analytic expression for the anticipated waiting time to reach the stability of cell size. The results show that the calculation of this waiting time is in good agreement with the experimental data and that the selective advantage plays a prominent role in cell size evolution, with mutation rate and population size having less impact. Finally, they employ a multistep process to approximate the Wright–Fisher model of cell size evolution and acquire an analytical formula for the median waiting time until the stability of cell size. This median time supports the idea that the selective advantage is the dominant force for the morphological evolution in the long-term experiment.</description><identifier>ISSN: 1751-8849</identifier><identifier>ISSN: 1751-8857</identifier><identifier>EISSN: 1751-8857</identifier><identifier>DOI: 10.1049/iet-syb.2013.0059</identifier><identifier>PMID: 25569861</identifier><language>eng</language><publisher>England: The Institution of Engineering and Technology</publisher><subject>Approximation ; Biological Evolution ; Cell Enlargement ; Cell Size ; cell size evolution ; cellular biophysics ; Computer Simulation ; deterministic approximation ; Dynamics ; Escherichia coli ; Escherichia coli - cytology ; Escherichia coli - physiology ; Evolution ; evolution (biological) ; Evolutionary ; evolutionary dynamics ; Mathematical analysis ; Mathematical models ; microorganisms ; Models, Genetic ; Morphogenesis - genetics ; morphological evolution ; morphological stability ; Mutation - genetics ; mutation rate ; population size ; Populations ; Stability ; stochastic approximation ; stochastic processes ; Wright–Fisher model</subject><ispartof>IET systems biology, 2015-02, Vol.9 (1), p.25-30</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5406-1ed3e6fde2d83de89ec990c4723d1156701fb78dada2faceb19cae8641207a373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687259/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687259/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11543,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-syb.2013.0059$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25569861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Fangshu</creatorcontrib><creatorcontrib>Yuan, Bo</creatorcontrib><title>Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli</title><title>IET systems biology</title><addtitle>IET Syst Biol</addtitle><description>To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term experiment with Escherichia coli, the authors present three mathematical approximations to the Wright–Fisher model of the morphological evolution. They firstly use a deterministic approximation, which fails to predict evolutionary dynamics of cell size and proves the importance of stochasticity in large populations. Then, they develop a stochastic approximation and derive an analytic expression for the anticipated waiting time to reach the stability of cell size. The results show that the calculation of this waiting time is in good agreement with the experimental data and that the selective advantage plays a prominent role in cell size evolution, with mutation rate and population size having less impact. Finally, they employ a multistep process to approximate the Wright–Fisher model of cell size evolution and acquire an analytical formula for the median waiting time until the stability of cell size. This median time supports the idea that the selective advantage is the dominant force for the morphological evolution in the long-term experiment.</description><subject>Approximation</subject><subject>Biological Evolution</subject><subject>Cell Enlargement</subject><subject>Cell Size</subject><subject>cell size evolution</subject><subject>cellular biophysics</subject><subject>Computer Simulation</subject><subject>deterministic approximation</subject><subject>Dynamics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - physiology</subject><subject>Evolution</subject><subject>evolution (biological)</subject><subject>Evolutionary</subject><subject>evolutionary dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>microorganisms</subject><subject>Models, Genetic</subject><subject>Morphogenesis - genetics</subject><subject>morphological evolution</subject><subject>morphological stability</subject><subject>Mutation - genetics</subject><subject>mutation rate</subject><subject>population size</subject><subject>Populations</subject><subject>Stability</subject><subject>stochastic approximation</subject><subject>stochastic processes</subject><subject>Wright–Fisher model</subject><issn>1751-8849</issn><issn>1751-8857</issn><issn>1751-8857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhiMEoqXwAFyQj3DIYjtxbHNAaqttqVSJA-XAyTj2ZOPKiZc4acnb42jbVZEQe_LI_ub3jL4se0vwiuBSfnQw5nGuVxSTYoUxk8-yY8IZyYVg_Pm-LuVR9irG20SwiuGX2RFNhRQVOc5-ru-Cn0YXej3MyM697pyJKDSoC8O2DT5snNEexVHXzrtxRq5HGvnQb_IRhg7B7y0MroN-RPdubNE6mjZdmNZpZIJ3r7MXjfYR3jycJ9n3i_XN-Zf8-uvl1fnpdW5YiaucgC2gaixQKwoLQoKREpuS08ISwiqOSVNzYbXVtNEGaiKNBlGVhGKuC16cZJ93udup7sCaNNCgvdqm2dJmKmin_n7pXas24U6JSnDKZAp4_xAwhF8TxFF1LhrwXvcQpqiIwAJLVorqMMoFowWTSctBtCoZ50zQMqFkh5ohxDhAsx-eYLX4Vsm3Sr7V4lstvlPPu6db7zseBSfg0w64dx7mw4nq248zenaBMcHLnvmuecFuwzT0yeB_p_nwD_5qfbOkPvlja5viD_3t2QI</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Cui, Fangshu</creator><creator>Yuan, Bo</creator><general>The Institution of Engineering and Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>201502</creationdate><title>Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli</title><author>Cui, Fangshu ; Yuan, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5406-1ed3e6fde2d83de89ec990c4723d1156701fb78dada2faceb19cae8641207a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Biological Evolution</topic><topic>Cell Enlargement</topic><topic>Cell Size</topic><topic>cell size evolution</topic><topic>cellular biophysics</topic><topic>Computer Simulation</topic><topic>deterministic approximation</topic><topic>Dynamics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - physiology</topic><topic>Evolution</topic><topic>evolution (biological)</topic><topic>Evolutionary</topic><topic>evolutionary dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>microorganisms</topic><topic>Models, Genetic</topic><topic>Morphogenesis - genetics</topic><topic>morphological evolution</topic><topic>morphological stability</topic><topic>Mutation - genetics</topic><topic>mutation rate</topic><topic>population size</topic><topic>Populations</topic><topic>Stability</topic><topic>stochastic approximation</topic><topic>stochastic processes</topic><topic>Wright–Fisher model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Fangshu</creatorcontrib><creatorcontrib>Yuan, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IET systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Fangshu</au><au>Yuan, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli</atitle><jtitle>IET systems biology</jtitle><addtitle>IET Syst Biol</addtitle><date>2015-02</date><risdate>2015</risdate><volume>9</volume><issue>1</issue><spage>25</spage><epage>30</epage><pages>25-30</pages><issn>1751-8849</issn><issn>1751-8857</issn><eissn>1751-8857</eissn><abstract>To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term experiment with Escherichia coli, the authors present three mathematical approximations to the Wright–Fisher model of the morphological evolution. They firstly use a deterministic approximation, which fails to predict evolutionary dynamics of cell size and proves the importance of stochasticity in large populations. Then, they develop a stochastic approximation and derive an analytic expression for the anticipated waiting time to reach the stability of cell size. The results show that the calculation of this waiting time is in good agreement with the experimental data and that the selective advantage plays a prominent role in cell size evolution, with mutation rate and population size having less impact. Finally, they employ a multistep process to approximate the Wright–Fisher model of cell size evolution and acquire an analytical formula for the median waiting time until the stability of cell size. This median time supports the idea that the selective advantage is the dominant force for the morphological evolution in the long-term experiment.</abstract><cop>England</cop><pub>The Institution of Engineering and Technology</pub><pmid>25569861</pmid><doi>10.1049/iet-syb.2013.0059</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8849
ispartof IET systems biology, 2015-02, Vol.9 (1), p.25-30
issn 1751-8849
1751-8857
1751-8857
language eng
recordid cdi_proquest_miscellaneous_1645775824
source Wiley-Blackwell Open Access Collection
subjects Approximation
Biological Evolution
Cell Enlargement
Cell Size
cell size evolution
cellular biophysics
Computer Simulation
deterministic approximation
Dynamics
Escherichia coli
Escherichia coli - cytology
Escherichia coli - physiology
Evolution
evolution (biological)
Evolutionary
evolutionary dynamics
Mathematical analysis
Mathematical models
microorganisms
Models, Genetic
Morphogenesis - genetics
morphological evolution
morphological stability
Mutation - genetics
mutation rate
population size
Populations
Stability
stochastic approximation
stochastic processes
Wright–Fisher model
title Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20dynamics%20of%20morphological%20stability%20in%20a%20long-term%20experiment%20with%20Escherichia%20coli&rft.jtitle=IET%20systems%20biology&rft.au=Cui,%20Fangshu&rft.date=2015-02&rft.volume=9&rft.issue=1&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.issn=1751-8849&rft.eissn=1751-8857&rft_id=info:doi/10.1049/iet-syb.2013.0059&rft_dat=%3Cproquest_24P%3E1808095486%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645775824&rft_id=info:pmid/25569861&rfr_iscdi=true