Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli
To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term ex...
Gespeichert in:
Veröffentlicht in: | IET systems biology 2015-02, Vol.9 (1), p.25-30 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | IET systems biology |
container_volume | 9 |
creator | Cui, Fangshu Yuan, Bo |
description | To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term experiment with Escherichia coli, the authors present three mathematical approximations to the Wright–Fisher model of the morphological evolution. They firstly use a deterministic approximation, which fails to predict evolutionary dynamics of cell size and proves the importance of stochasticity in large populations. Then, they develop a stochastic approximation and derive an analytic expression for the anticipated waiting time to reach the stability of cell size. The results show that the calculation of this waiting time is in good agreement with the experimental data and that the selective advantage plays a prominent role in cell size evolution, with mutation rate and population size having less impact. Finally, they employ a multistep process to approximate the Wright–Fisher model of cell size evolution and acquire an analytical formula for the median waiting time until the stability of cell size. This median time supports the idea that the selective advantage is the dominant force for the morphological evolution in the long-term experiment. |
doi_str_mv | 10.1049/iet-syb.2013.0059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1645775824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808095486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5406-1ed3e6fde2d83de89ec990c4723d1156701fb78dada2faceb19cae8641207a373</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEoqXwAFyQj3DIYjtxbHNAaqttqVSJA-XAyTj2ZOPKiZc4acnb42jbVZEQe_LI_ub3jL4se0vwiuBSfnQw5nGuVxSTYoUxk8-yY8IZyYVg_Pm-LuVR9irG20SwiuGX2RFNhRQVOc5-ru-Cn0YXej3MyM697pyJKDSoC8O2DT5snNEexVHXzrtxRq5HGvnQb_IRhg7B7y0MroN-RPdubNE6mjZdmNZpZIJ3r7MXjfYR3jycJ9n3i_XN-Zf8-uvl1fnpdW5YiaucgC2gaixQKwoLQoKREpuS08ISwiqOSVNzYbXVtNEGaiKNBlGVhGKuC16cZJ93udup7sCaNNCgvdqm2dJmKmin_n7pXas24U6JSnDKZAp4_xAwhF8TxFF1LhrwXvcQpqiIwAJLVorqMMoFowWTSctBtCoZ50zQMqFkh5ohxDhAsx-eYLX4Vsm3Sr7V4lstvlPPu6db7zseBSfg0w64dx7mw4nq248zenaBMcHLnvmuecFuwzT0yeB_p_nwD_5qfbOkPvlja5viD_3t2QI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645775824</pqid></control><display><type>article</type><title>Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli</title><source>Wiley-Blackwell Open Access Collection</source><creator>Cui, Fangshu ; Yuan, Bo</creator><creatorcontrib>Cui, Fangshu ; Yuan, Bo</creatorcontrib><description>To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term experiment with Escherichia coli, the authors present three mathematical approximations to the Wright–Fisher model of the morphological evolution. They firstly use a deterministic approximation, which fails to predict evolutionary dynamics of cell size and proves the importance of stochasticity in large populations. Then, they develop a stochastic approximation and derive an analytic expression for the anticipated waiting time to reach the stability of cell size. The results show that the calculation of this waiting time is in good agreement with the experimental data and that the selective advantage plays a prominent role in cell size evolution, with mutation rate and population size having less impact. Finally, they employ a multistep process to approximate the Wright–Fisher model of cell size evolution and acquire an analytical formula for the median waiting time until the stability of cell size. This median time supports the idea that the selective advantage is the dominant force for the morphological evolution in the long-term experiment.</description><identifier>ISSN: 1751-8849</identifier><identifier>ISSN: 1751-8857</identifier><identifier>EISSN: 1751-8857</identifier><identifier>DOI: 10.1049/iet-syb.2013.0059</identifier><identifier>PMID: 25569861</identifier><language>eng</language><publisher>England: The Institution of Engineering and Technology</publisher><subject>Approximation ; Biological Evolution ; Cell Enlargement ; Cell Size ; cell size evolution ; cellular biophysics ; Computer Simulation ; deterministic approximation ; Dynamics ; Escherichia coli ; Escherichia coli - cytology ; Escherichia coli - physiology ; Evolution ; evolution (biological) ; Evolutionary ; evolutionary dynamics ; Mathematical analysis ; Mathematical models ; microorganisms ; Models, Genetic ; Morphogenesis - genetics ; morphological evolution ; morphological stability ; Mutation - genetics ; mutation rate ; population size ; Populations ; Stability ; stochastic approximation ; stochastic processes ; Wright–Fisher model</subject><ispartof>IET systems biology, 2015-02, Vol.9 (1), p.25-30</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5406-1ed3e6fde2d83de89ec990c4723d1156701fb78dada2faceb19cae8641207a373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687259/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687259/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11543,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-syb.2013.0059$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25569861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Fangshu</creatorcontrib><creatorcontrib>Yuan, Bo</creatorcontrib><title>Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli</title><title>IET systems biology</title><addtitle>IET Syst Biol</addtitle><description>To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term experiment with Escherichia coli, the authors present three mathematical approximations to the Wright–Fisher model of the morphological evolution. They firstly use a deterministic approximation, which fails to predict evolutionary dynamics of cell size and proves the importance of stochasticity in large populations. Then, they develop a stochastic approximation and derive an analytic expression for the anticipated waiting time to reach the stability of cell size. The results show that the calculation of this waiting time is in good agreement with the experimental data and that the selective advantage plays a prominent role in cell size evolution, with mutation rate and population size having less impact. Finally, they employ a multistep process to approximate the Wright–Fisher model of cell size evolution and acquire an analytical formula for the median waiting time until the stability of cell size. This median time supports the idea that the selective advantage is the dominant force for the morphological evolution in the long-term experiment.</description><subject>Approximation</subject><subject>Biological Evolution</subject><subject>Cell Enlargement</subject><subject>Cell Size</subject><subject>cell size evolution</subject><subject>cellular biophysics</subject><subject>Computer Simulation</subject><subject>deterministic approximation</subject><subject>Dynamics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - physiology</subject><subject>Evolution</subject><subject>evolution (biological)</subject><subject>Evolutionary</subject><subject>evolutionary dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>microorganisms</subject><subject>Models, Genetic</subject><subject>Morphogenesis - genetics</subject><subject>morphological evolution</subject><subject>morphological stability</subject><subject>Mutation - genetics</subject><subject>mutation rate</subject><subject>population size</subject><subject>Populations</subject><subject>Stability</subject><subject>stochastic approximation</subject><subject>stochastic processes</subject><subject>Wright–Fisher model</subject><issn>1751-8849</issn><issn>1751-8857</issn><issn>1751-8857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhiMEoqXwAFyQj3DIYjtxbHNAaqttqVSJA-XAyTj2ZOPKiZc4acnb42jbVZEQe_LI_ub3jL4se0vwiuBSfnQw5nGuVxSTYoUxk8-yY8IZyYVg_Pm-LuVR9irG20SwiuGX2RFNhRQVOc5-ru-Cn0YXej3MyM697pyJKDSoC8O2DT5snNEexVHXzrtxRq5HGvnQb_IRhg7B7y0MroN-RPdubNE6mjZdmNZpZIJ3r7MXjfYR3jycJ9n3i_XN-Zf8-uvl1fnpdW5YiaucgC2gaixQKwoLQoKREpuS08ISwiqOSVNzYbXVtNEGaiKNBlGVhGKuC16cZJ93udup7sCaNNCgvdqm2dJmKmin_n7pXas24U6JSnDKZAp4_xAwhF8TxFF1LhrwXvcQpqiIwAJLVorqMMoFowWTSctBtCoZ50zQMqFkh5ohxDhAsx-eYLX4Vsm3Sr7V4lstvlPPu6db7zseBSfg0w64dx7mw4nq248zenaBMcHLnvmuecFuwzT0yeB_p_nwD_5qfbOkPvlja5viD_3t2QI</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Cui, Fangshu</creator><creator>Yuan, Bo</creator><general>The Institution of Engineering and Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>201502</creationdate><title>Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli</title><author>Cui, Fangshu ; Yuan, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5406-1ed3e6fde2d83de89ec990c4723d1156701fb78dada2faceb19cae8641207a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Biological Evolution</topic><topic>Cell Enlargement</topic><topic>Cell Size</topic><topic>cell size evolution</topic><topic>cellular biophysics</topic><topic>Computer Simulation</topic><topic>deterministic approximation</topic><topic>Dynamics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - physiology</topic><topic>Evolution</topic><topic>evolution (biological)</topic><topic>Evolutionary</topic><topic>evolutionary dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>microorganisms</topic><topic>Models, Genetic</topic><topic>Morphogenesis - genetics</topic><topic>morphological evolution</topic><topic>morphological stability</topic><topic>Mutation - genetics</topic><topic>mutation rate</topic><topic>population size</topic><topic>Populations</topic><topic>Stability</topic><topic>stochastic approximation</topic><topic>stochastic processes</topic><topic>Wright–Fisher model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Fangshu</creatorcontrib><creatorcontrib>Yuan, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IET systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Fangshu</au><au>Yuan, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli</atitle><jtitle>IET systems biology</jtitle><addtitle>IET Syst Biol</addtitle><date>2015-02</date><risdate>2015</risdate><volume>9</volume><issue>1</issue><spage>25</spage><epage>30</epage><pages>25-30</pages><issn>1751-8849</issn><issn>1751-8857</issn><eissn>1751-8857</eissn><abstract>To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term experiment with Escherichia coli, the authors present three mathematical approximations to the Wright–Fisher model of the morphological evolution. They firstly use a deterministic approximation, which fails to predict evolutionary dynamics of cell size and proves the importance of stochasticity in large populations. Then, they develop a stochastic approximation and derive an analytic expression for the anticipated waiting time to reach the stability of cell size. The results show that the calculation of this waiting time is in good agreement with the experimental data and that the selective advantage plays a prominent role in cell size evolution, with mutation rate and population size having less impact. Finally, they employ a multistep process to approximate the Wright–Fisher model of cell size evolution and acquire an analytical formula for the median waiting time until the stability of cell size. This median time supports the idea that the selective advantage is the dominant force for the morphological evolution in the long-term experiment.</abstract><cop>England</cop><pub>The Institution of Engineering and Technology</pub><pmid>25569861</pmid><doi>10.1049/iet-syb.2013.0059</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8849 |
ispartof | IET systems biology, 2015-02, Vol.9 (1), p.25-30 |
issn | 1751-8849 1751-8857 1751-8857 |
language | eng |
recordid | cdi_proquest_miscellaneous_1645775824 |
source | Wiley-Blackwell Open Access Collection |
subjects | Approximation Biological Evolution Cell Enlargement Cell Size cell size evolution cellular biophysics Computer Simulation deterministic approximation Dynamics Escherichia coli Escherichia coli - cytology Escherichia coli - physiology Evolution evolution (biological) Evolutionary evolutionary dynamics Mathematical analysis Mathematical models microorganisms Models, Genetic Morphogenesis - genetics morphological evolution morphological stability Mutation - genetics mutation rate population size Populations Stability stochastic approximation stochastic processes Wright–Fisher model |
title | Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20dynamics%20of%20morphological%20stability%20in%20a%20long-term%20experiment%20with%20Escherichia%20coli&rft.jtitle=IET%20systems%20biology&rft.au=Cui,%20Fangshu&rft.date=2015-02&rft.volume=9&rft.issue=1&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.issn=1751-8849&rft.eissn=1751-8857&rft_id=info:doi/10.1049/iet-syb.2013.0059&rft_dat=%3Cproquest_24P%3E1808095486%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645775824&rft_id=info:pmid/25569861&rfr_iscdi=true |