Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements
Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere‐Ionosphere Coupling Simulation (GUMICS‐4) global magnetohydro...
Gespeichert in:
Veröffentlicht in: | Space Weather 2014-10, Vol.12 (10), p.582-600 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 600 |
---|---|
container_issue | 10 |
container_start_page | 582 |
container_title | Space Weather |
container_volume | 12 |
creator | Juusola, L. Facskó, G. Honkonen, I. Janhunen, P. Vanhamäki, H. Kauristie, K. Laitinen, T. V. Milan, S. E. Palmroth, M. Tanskanen, E. I. Viljanen, A. |
description | Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere‐Ionosphere Coupling Simulation (GUMICS‐4) global magnetohydrodynamic model with measurements. The GUMICS‐4 data consist of a set of runs that was fed with real solar wind measurements and cover the period of 1 year. Ionospheric convection measurements are from the Super Dual Auroral Radar Network (SuperDARN) radars, and electric currents are derived from the magnetic field measured by the CHAMP satellite. Auroral electrojet indices are used to examine the disturbance magnetic field on ground. The signatures of electrodynamic coupling between the magnetosphere and ionosphere extend to lower latitudes in GUMICS‐4 than in observations, and key features of the auroral ovals—the Region 2 field‐aligned currents, electrojets, Harang discontinuity, and ring of enhanced conductivity—are not properly reproduced. The ground magnetic field is even at best about 5 times weaker than measurements, which can be a problem for forecasting geomagnetically induced currents. According to the measurements, the ionospheric electrostatic potential does not change significantly from winter to summer but field‐aligned currents enhance, whereas in GUMICS‐4, the electrostatic potential weakens from winter to summer but field‐aligned currents do not change. This could be a consequence of the missing Region 2 currents: the Region 1 current has to close with itself across the polar cap, which makes it sensitive to solar UV conductivity. Precipitation energy and conductance peak amplitudes in GUMICS‐4 agree with observations.
Key Points
One year of GUMICS‐4 MHD simulations are compared with ionospheric observationsKey features of the auroral ovals are not properly reproducedSimulated polar cap potential is sensitive to seasonal variation of solar UV |
doi_str_mv | 10.1002/2014SW001082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642624113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3557571201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-6fcde0738f3f5fef299d147bd4c0f95944ac23205cd99bc124020406bfbe2a233</originalsourceid><addsrcrecordid>eNqN0blOxDAQBuAIgcTZ8QCWaCgI-MrhEpZlAXEILRCJxnKcMWRJ4sXOcrw9hkUIUSAqj0ffTDF_FG0SvEswpnsUEz4uMCY4pwvRCkk4jTMm8OKPejla9X4SNE8oX4km4171te9rrRqkbTtVrva2Q9YgDypUof0cegHZzqO6Q_0DoNHN-clgHHN039gyiPPjQ9TaChoUlPXTB3CAVFehNuyYOWih6_16tGRU42Hj612Lbo6G14Pj-OxydDLYP4s1J5jEqdEV4IzlhpnEgKFCVIRnZcU1NiIRnCtNGcWJroQoNaEcU8xxWpoSqKKMrUXb871TZ59m4HvZ1l5D06gO7MxLknKaUk7I_ygVaZJ-0K1fdGJnLpznUyUsF6nIg9qZK-2s9w6MnLq6Ve5NEiw_MpI_MwqczvlL3cDbn1aOi2H45yQMxfOhEBu8fg8p9yjTjGWJLC5GsihuD67yOyZP2Ttfq6Bx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645389698</pqid></control><display><type>article</type><title>Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Juusola, L. ; Facskó, G. ; Honkonen, I. ; Janhunen, P. ; Vanhamäki, H. ; Kauristie, K. ; Laitinen, T. V. ; Milan, S. E. ; Palmroth, M. ; Tanskanen, E. I. ; Viljanen, A.</creator><creatorcontrib>Juusola, L. ; Facskó, G. ; Honkonen, I. ; Janhunen, P. ; Vanhamäki, H. ; Kauristie, K. ; Laitinen, T. V. ; Milan, S. E. ; Palmroth, M. ; Tanskanen, E. I. ; Viljanen, A.</creatorcontrib><description>Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere‐Ionosphere Coupling Simulation (GUMICS‐4) global magnetohydrodynamic model with measurements. The GUMICS‐4 data consist of a set of runs that was fed with real solar wind measurements and cover the period of 1 year. Ionospheric convection measurements are from the Super Dual Auroral Radar Network (SuperDARN) radars, and electric currents are derived from the magnetic field measured by the CHAMP satellite. Auroral electrojet indices are used to examine the disturbance magnetic field on ground. The signatures of electrodynamic coupling between the magnetosphere and ionosphere extend to lower latitudes in GUMICS‐4 than in observations, and key features of the auroral ovals—the Region 2 field‐aligned currents, electrojets, Harang discontinuity, and ring of enhanced conductivity—are not properly reproduced. The ground magnetic field is even at best about 5 times weaker than measurements, which can be a problem for forecasting geomagnetically induced currents. According to the measurements, the ionospheric electrostatic potential does not change significantly from winter to summer but field‐aligned currents enhance, whereas in GUMICS‐4, the electrostatic potential weakens from winter to summer but field‐aligned currents do not change. This could be a consequence of the missing Region 2 currents: the Region 1 current has to close with itself across the polar cap, which makes it sensitive to solar UV conductivity. Precipitation energy and conductance peak amplitudes in GUMICS‐4 agree with observations.
Key Points
One year of GUMICS‐4 MHD simulations are compared with ionospheric observationsKey features of the auroral ovals are not properly reproducedSimulated polar cap potential is sensitive to seasonal variation of solar UV</description><identifier>ISSN: 1542-7390</identifier><identifier>ISSN: 1539-4964</identifier><identifier>EISSN: 1542-7390</identifier><identifier>DOI: 10.1002/2014SW001082</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Grounds ; high-latitude ionosphere ; Ionosphere ; Ionospherics ; Magnetic fields ; Magnetohydrodynamics ; Mathematical models ; MHD simulation ; Seasonal variations ; Simulation ; Space weather</subject><ispartof>Space Weather, 2014-10, Vol.12 (10), p.582-600</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-6fcde0738f3f5fef299d147bd4c0f95944ac23205cd99bc124020406bfbe2a233</citedby><cites>FETCH-LOGICAL-c4101-6fcde0738f3f5fef299d147bd4c0f95944ac23205cd99bc124020406bfbe2a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014SW001082$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014SW001082$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Juusola, L.</creatorcontrib><creatorcontrib>Facskó, G.</creatorcontrib><creatorcontrib>Honkonen, I.</creatorcontrib><creatorcontrib>Janhunen, P.</creatorcontrib><creatorcontrib>Vanhamäki, H.</creatorcontrib><creatorcontrib>Kauristie, K.</creatorcontrib><creatorcontrib>Laitinen, T. V.</creatorcontrib><creatorcontrib>Milan, S. E.</creatorcontrib><creatorcontrib>Palmroth, M.</creatorcontrib><creatorcontrib>Tanskanen, E. I.</creatorcontrib><creatorcontrib>Viljanen, A.</creatorcontrib><title>Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements</title><title>Space Weather</title><addtitle>Space Weather</addtitle><description>Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere‐Ionosphere Coupling Simulation (GUMICS‐4) global magnetohydrodynamic model with measurements. The GUMICS‐4 data consist of a set of runs that was fed with real solar wind measurements and cover the period of 1 year. Ionospheric convection measurements are from the Super Dual Auroral Radar Network (SuperDARN) radars, and electric currents are derived from the magnetic field measured by the CHAMP satellite. Auroral electrojet indices are used to examine the disturbance magnetic field on ground. The signatures of electrodynamic coupling between the magnetosphere and ionosphere extend to lower latitudes in GUMICS‐4 than in observations, and key features of the auroral ovals—the Region 2 field‐aligned currents, electrojets, Harang discontinuity, and ring of enhanced conductivity—are not properly reproduced. The ground magnetic field is even at best about 5 times weaker than measurements, which can be a problem for forecasting geomagnetically induced currents. According to the measurements, the ionospheric electrostatic potential does not change significantly from winter to summer but field‐aligned currents enhance, whereas in GUMICS‐4, the electrostatic potential weakens from winter to summer but field‐aligned currents do not change. This could be a consequence of the missing Region 2 currents: the Region 1 current has to close with itself across the polar cap, which makes it sensitive to solar UV conductivity. Precipitation energy and conductance peak amplitudes in GUMICS‐4 agree with observations.
Key Points
One year of GUMICS‐4 MHD simulations are compared with ionospheric observationsKey features of the auroral ovals are not properly reproducedSimulated polar cap potential is sensitive to seasonal variation of solar UV</description><subject>Grounds</subject><subject>high-latitude ionosphere</subject><subject>Ionosphere</subject><subject>Ionospherics</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>MHD simulation</subject><subject>Seasonal variations</subject><subject>Simulation</subject><subject>Space weather</subject><issn>1542-7390</issn><issn>1539-4964</issn><issn>1542-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0blOxDAQBuAIgcTZ8QCWaCgI-MrhEpZlAXEILRCJxnKcMWRJ4sXOcrw9hkUIUSAqj0ffTDF_FG0SvEswpnsUEz4uMCY4pwvRCkk4jTMm8OKPejla9X4SNE8oX4km4171te9rrRqkbTtVrva2Q9YgDypUof0cegHZzqO6Q_0DoNHN-clgHHN039gyiPPjQ9TaChoUlPXTB3CAVFehNuyYOWih6_16tGRU42Hj612Lbo6G14Pj-OxydDLYP4s1J5jEqdEV4IzlhpnEgKFCVIRnZcU1NiIRnCtNGcWJroQoNaEcU8xxWpoSqKKMrUXb871TZ59m4HvZ1l5D06gO7MxLknKaUk7I_ygVaZJ-0K1fdGJnLpznUyUsF6nIg9qZK-2s9w6MnLq6Ve5NEiw_MpI_MwqczvlL3cDbn1aOi2H45yQMxfOhEBu8fg8p9yjTjGWJLC5GsihuD67yOyZP2Ttfq6Bx</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Juusola, L.</creator><creator>Facskó, G.</creator><creator>Honkonen, I.</creator><creator>Janhunen, P.</creator><creator>Vanhamäki, H.</creator><creator>Kauristie, K.</creator><creator>Laitinen, T. V.</creator><creator>Milan, S. E.</creator><creator>Palmroth, M.</creator><creator>Tanskanen, E. I.</creator><creator>Viljanen, A.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201410</creationdate><title>Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements</title><author>Juusola, L. ; Facskó, G. ; Honkonen, I. ; Janhunen, P. ; Vanhamäki, H. ; Kauristie, K. ; Laitinen, T. V. ; Milan, S. E. ; Palmroth, M. ; Tanskanen, E. I. ; Viljanen, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-6fcde0738f3f5fef299d147bd4c0f95944ac23205cd99bc124020406bfbe2a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Grounds</topic><topic>high-latitude ionosphere</topic><topic>Ionosphere</topic><topic>Ionospherics</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>MHD simulation</topic><topic>Seasonal variations</topic><topic>Simulation</topic><topic>Space weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juusola, L.</creatorcontrib><creatorcontrib>Facskó, G.</creatorcontrib><creatorcontrib>Honkonen, I.</creatorcontrib><creatorcontrib>Janhunen, P.</creatorcontrib><creatorcontrib>Vanhamäki, H.</creatorcontrib><creatorcontrib>Kauristie, K.</creatorcontrib><creatorcontrib>Laitinen, T. V.</creatorcontrib><creatorcontrib>Milan, S. E.</creatorcontrib><creatorcontrib>Palmroth, M.</creatorcontrib><creatorcontrib>Tanskanen, E. I.</creatorcontrib><creatorcontrib>Viljanen, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Space Weather</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juusola, L.</au><au>Facskó, G.</au><au>Honkonen, I.</au><au>Janhunen, P.</au><au>Vanhamäki, H.</au><au>Kauristie, K.</au><au>Laitinen, T. V.</au><au>Milan, S. E.</au><au>Palmroth, M.</au><au>Tanskanen, E. I.</au><au>Viljanen, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements</atitle><jtitle>Space Weather</jtitle><addtitle>Space Weather</addtitle><date>2014-10</date><risdate>2014</risdate><volume>12</volume><issue>10</issue><spage>582</spage><epage>600</epage><pages>582-600</pages><issn>1542-7390</issn><issn>1539-4964</issn><eissn>1542-7390</eissn><abstract>Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere‐Ionosphere Coupling Simulation (GUMICS‐4) global magnetohydrodynamic model with measurements. The GUMICS‐4 data consist of a set of runs that was fed with real solar wind measurements and cover the period of 1 year. Ionospheric convection measurements are from the Super Dual Auroral Radar Network (SuperDARN) radars, and electric currents are derived from the magnetic field measured by the CHAMP satellite. Auroral electrojet indices are used to examine the disturbance magnetic field on ground. The signatures of electrodynamic coupling between the magnetosphere and ionosphere extend to lower latitudes in GUMICS‐4 than in observations, and key features of the auroral ovals—the Region 2 field‐aligned currents, electrojets, Harang discontinuity, and ring of enhanced conductivity—are not properly reproduced. The ground magnetic field is even at best about 5 times weaker than measurements, which can be a problem for forecasting geomagnetically induced currents. According to the measurements, the ionospheric electrostatic potential does not change significantly from winter to summer but field‐aligned currents enhance, whereas in GUMICS‐4, the electrostatic potential weakens from winter to summer but field‐aligned currents do not change. This could be a consequence of the missing Region 2 currents: the Region 1 current has to close with itself across the polar cap, which makes it sensitive to solar UV conductivity. Precipitation energy and conductance peak amplitudes in GUMICS‐4 agree with observations.
Key Points
One year of GUMICS‐4 MHD simulations are compared with ionospheric observationsKey features of the auroral ovals are not properly reproducedSimulated polar cap potential is sensitive to seasonal variation of solar UV</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014SW001082</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1542-7390 |
ispartof | Space Weather, 2014-10, Vol.12 (10), p.582-600 |
issn | 1542-7390 1539-4964 1542-7390 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642624113 |
source | Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Grounds high-latitude ionosphere Ionosphere Ionospherics Magnetic fields Magnetohydrodynamics Mathematical models MHD simulation Seasonal variations Simulation Space weather |
title | Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20comparison%20of%20seasonal%20variations%20in%20the%20GUMICS-4%20global%20MHD%20model%20ionosphere%20and%20measurements&rft.jtitle=Space%20Weather&rft.au=Juusola,%20L.&rft.date=2014-10&rft.volume=12&rft.issue=10&rft.spage=582&rft.epage=600&rft.pages=582-600&rft.issn=1542-7390&rft.eissn=1542-7390&rft_id=info:doi/10.1002/2014SW001082&rft_dat=%3Cproquest_cross%3E3557571201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645389698&rft_id=info:pmid/&rfr_iscdi=true |