Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements

Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere‐Ionosphere Coupling Simulation (GUMICS‐4) global magnetohydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2014-10, Vol.12 (10), p.582-600
Hauptverfasser: Juusola, L., Facskó, G., Honkonen, I., Janhunen, P., Vanhamäki, H., Kauristie, K., Laitinen, T. V., Milan, S. E., Palmroth, M., Tanskanen, E. I., Viljanen, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 600
container_issue 10
container_start_page 582
container_title Space Weather
container_volume 12
creator Juusola, L.
Facskó, G.
Honkonen, I.
Janhunen, P.
Vanhamäki, H.
Kauristie, K.
Laitinen, T. V.
Milan, S. E.
Palmroth, M.
Tanskanen, E. I.
Viljanen, A.
description Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere‐Ionosphere Coupling Simulation (GUMICS‐4) global magnetohydrodynamic model with measurements. The GUMICS‐4 data consist of a set of runs that was fed with real solar wind measurements and cover the period of 1 year. Ionospheric convection measurements are from the Super Dual Auroral Radar Network (SuperDARN) radars, and electric currents are derived from the magnetic field measured by the CHAMP satellite. Auroral electrojet indices are used to examine the disturbance magnetic field on ground. The signatures of electrodynamic coupling between the magnetosphere and ionosphere extend to lower latitudes in GUMICS‐4 than in observations, and key features of the auroral ovals—the Region 2 field‐aligned currents, electrojets, Harang discontinuity, and ring of enhanced conductivity—are not properly reproduced. The ground magnetic field is even at best about 5 times weaker than measurements, which can be a problem for forecasting geomagnetically induced currents. According to the measurements, the ionospheric electrostatic potential does not change significantly from winter to summer but field‐aligned currents enhance, whereas in GUMICS‐4, the electrostatic potential weakens from winter to summer but field‐aligned currents do not change. This could be a consequence of the missing Region 2 currents: the Region 1 current has to close with itself across the polar cap, which makes it sensitive to solar UV conductivity. Precipitation energy and conductance peak amplitudes in GUMICS‐4 agree with observations. Key Points One year of GUMICS‐4 MHD simulations are compared with ionospheric observationsKey features of the auroral ovals are not properly reproducedSimulated polar cap potential is sensitive to seasonal variation of solar UV
doi_str_mv 10.1002/2014SW001082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642624113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3557571201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-6fcde0738f3f5fef299d147bd4c0f95944ac23205cd99bc124020406bfbe2a233</originalsourceid><addsrcrecordid>eNqN0blOxDAQBuAIgcTZ8QCWaCgI-MrhEpZlAXEILRCJxnKcMWRJ4sXOcrw9hkUIUSAqj0ffTDF_FG0SvEswpnsUEz4uMCY4pwvRCkk4jTMm8OKPejla9X4SNE8oX4km4171te9rrRqkbTtVrva2Q9YgDypUof0cegHZzqO6Q_0DoNHN-clgHHN039gyiPPjQ9TaChoUlPXTB3CAVFehNuyYOWih6_16tGRU42Hj612Lbo6G14Pj-OxydDLYP4s1J5jEqdEV4IzlhpnEgKFCVIRnZcU1NiIRnCtNGcWJroQoNaEcU8xxWpoSqKKMrUXb871TZ59m4HvZ1l5D06gO7MxLknKaUk7I_ygVaZJ-0K1fdGJnLpznUyUsF6nIg9qZK-2s9w6MnLq6Ve5NEiw_MpI_MwqczvlL3cDbn1aOi2H45yQMxfOhEBu8fg8p9yjTjGWJLC5GsihuD67yOyZP2Ttfq6Bx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645389698</pqid></control><display><type>article</type><title>Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Juusola, L. ; Facskó, G. ; Honkonen, I. ; Janhunen, P. ; Vanhamäki, H. ; Kauristie, K. ; Laitinen, T. V. ; Milan, S. E. ; Palmroth, M. ; Tanskanen, E. I. ; Viljanen, A.</creator><creatorcontrib>Juusola, L. ; Facskó, G. ; Honkonen, I. ; Janhunen, P. ; Vanhamäki, H. ; Kauristie, K. ; Laitinen, T. V. ; Milan, S. E. ; Palmroth, M. ; Tanskanen, E. I. ; Viljanen, A.</creatorcontrib><description>Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere‐Ionosphere Coupling Simulation (GUMICS‐4) global magnetohydrodynamic model with measurements. The GUMICS‐4 data consist of a set of runs that was fed with real solar wind measurements and cover the period of 1 year. Ionospheric convection measurements are from the Super Dual Auroral Radar Network (SuperDARN) radars, and electric currents are derived from the magnetic field measured by the CHAMP satellite. Auroral electrojet indices are used to examine the disturbance magnetic field on ground. The signatures of electrodynamic coupling between the magnetosphere and ionosphere extend to lower latitudes in GUMICS‐4 than in observations, and key features of the auroral ovals—the Region 2 field‐aligned currents, electrojets, Harang discontinuity, and ring of enhanced conductivity—are not properly reproduced. The ground magnetic field is even at best about 5 times weaker than measurements, which can be a problem for forecasting geomagnetically induced currents. According to the measurements, the ionospheric electrostatic potential does not change significantly from winter to summer but field‐aligned currents enhance, whereas in GUMICS‐4, the electrostatic potential weakens from winter to summer but field‐aligned currents do not change. This could be a consequence of the missing Region 2 currents: the Region 1 current has to close with itself across the polar cap, which makes it sensitive to solar UV conductivity. Precipitation energy and conductance peak amplitudes in GUMICS‐4 agree with observations. Key Points One year of GUMICS‐4 MHD simulations are compared with ionospheric observationsKey features of the auroral ovals are not properly reproducedSimulated polar cap potential is sensitive to seasonal variation of solar UV</description><identifier>ISSN: 1542-7390</identifier><identifier>ISSN: 1539-4964</identifier><identifier>EISSN: 1542-7390</identifier><identifier>DOI: 10.1002/2014SW001082</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Grounds ; high-latitude ionosphere ; Ionosphere ; Ionospherics ; Magnetic fields ; Magnetohydrodynamics ; Mathematical models ; MHD simulation ; Seasonal variations ; Simulation ; Space weather</subject><ispartof>Space Weather, 2014-10, Vol.12 (10), p.582-600</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-6fcde0738f3f5fef299d147bd4c0f95944ac23205cd99bc124020406bfbe2a233</citedby><cites>FETCH-LOGICAL-c4101-6fcde0738f3f5fef299d147bd4c0f95944ac23205cd99bc124020406bfbe2a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014SW001082$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014SW001082$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Juusola, L.</creatorcontrib><creatorcontrib>Facskó, G.</creatorcontrib><creatorcontrib>Honkonen, I.</creatorcontrib><creatorcontrib>Janhunen, P.</creatorcontrib><creatorcontrib>Vanhamäki, H.</creatorcontrib><creatorcontrib>Kauristie, K.</creatorcontrib><creatorcontrib>Laitinen, T. V.</creatorcontrib><creatorcontrib>Milan, S. E.</creatorcontrib><creatorcontrib>Palmroth, M.</creatorcontrib><creatorcontrib>Tanskanen, E. I.</creatorcontrib><creatorcontrib>Viljanen, A.</creatorcontrib><title>Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements</title><title>Space Weather</title><addtitle>Space Weather</addtitle><description>Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere‐Ionosphere Coupling Simulation (GUMICS‐4) global magnetohydrodynamic model with measurements. The GUMICS‐4 data consist of a set of runs that was fed with real solar wind measurements and cover the period of 1 year. Ionospheric convection measurements are from the Super Dual Auroral Radar Network (SuperDARN) radars, and electric currents are derived from the magnetic field measured by the CHAMP satellite. Auroral electrojet indices are used to examine the disturbance magnetic field on ground. The signatures of electrodynamic coupling between the magnetosphere and ionosphere extend to lower latitudes in GUMICS‐4 than in observations, and key features of the auroral ovals—the Region 2 field‐aligned currents, electrojets, Harang discontinuity, and ring of enhanced conductivity—are not properly reproduced. The ground magnetic field is even at best about 5 times weaker than measurements, which can be a problem for forecasting geomagnetically induced currents. According to the measurements, the ionospheric electrostatic potential does not change significantly from winter to summer but field‐aligned currents enhance, whereas in GUMICS‐4, the electrostatic potential weakens from winter to summer but field‐aligned currents do not change. This could be a consequence of the missing Region 2 currents: the Region 1 current has to close with itself across the polar cap, which makes it sensitive to solar UV conductivity. Precipitation energy and conductance peak amplitudes in GUMICS‐4 agree with observations. Key Points One year of GUMICS‐4 MHD simulations are compared with ionospheric observationsKey features of the auroral ovals are not properly reproducedSimulated polar cap potential is sensitive to seasonal variation of solar UV</description><subject>Grounds</subject><subject>high-latitude ionosphere</subject><subject>Ionosphere</subject><subject>Ionospherics</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>MHD simulation</subject><subject>Seasonal variations</subject><subject>Simulation</subject><subject>Space weather</subject><issn>1542-7390</issn><issn>1539-4964</issn><issn>1542-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0blOxDAQBuAIgcTZ8QCWaCgI-MrhEpZlAXEILRCJxnKcMWRJ4sXOcrw9hkUIUSAqj0ffTDF_FG0SvEswpnsUEz4uMCY4pwvRCkk4jTMm8OKPejla9X4SNE8oX4km4171te9rrRqkbTtVrva2Q9YgDypUof0cegHZzqO6Q_0DoNHN-clgHHN039gyiPPjQ9TaChoUlPXTB3CAVFehNuyYOWih6_16tGRU42Hj612Lbo6G14Pj-OxydDLYP4s1J5jEqdEV4IzlhpnEgKFCVIRnZcU1NiIRnCtNGcWJroQoNaEcU8xxWpoSqKKMrUXb871TZ59m4HvZ1l5D06gO7MxLknKaUk7I_ygVaZJ-0K1fdGJnLpznUyUsF6nIg9qZK-2s9w6MnLq6Ve5NEiw_MpI_MwqczvlL3cDbn1aOi2H45yQMxfOhEBu8fg8p9yjTjGWJLC5GsihuD67yOyZP2Ttfq6Bx</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Juusola, L.</creator><creator>Facskó, G.</creator><creator>Honkonen, I.</creator><creator>Janhunen, P.</creator><creator>Vanhamäki, H.</creator><creator>Kauristie, K.</creator><creator>Laitinen, T. V.</creator><creator>Milan, S. E.</creator><creator>Palmroth, M.</creator><creator>Tanskanen, E. I.</creator><creator>Viljanen, A.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201410</creationdate><title>Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements</title><author>Juusola, L. ; Facskó, G. ; Honkonen, I. ; Janhunen, P. ; Vanhamäki, H. ; Kauristie, K. ; Laitinen, T. V. ; Milan, S. E. ; Palmroth, M. ; Tanskanen, E. I. ; Viljanen, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-6fcde0738f3f5fef299d147bd4c0f95944ac23205cd99bc124020406bfbe2a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Grounds</topic><topic>high-latitude ionosphere</topic><topic>Ionosphere</topic><topic>Ionospherics</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>MHD simulation</topic><topic>Seasonal variations</topic><topic>Simulation</topic><topic>Space weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juusola, L.</creatorcontrib><creatorcontrib>Facskó, G.</creatorcontrib><creatorcontrib>Honkonen, I.</creatorcontrib><creatorcontrib>Janhunen, P.</creatorcontrib><creatorcontrib>Vanhamäki, H.</creatorcontrib><creatorcontrib>Kauristie, K.</creatorcontrib><creatorcontrib>Laitinen, T. V.</creatorcontrib><creatorcontrib>Milan, S. E.</creatorcontrib><creatorcontrib>Palmroth, M.</creatorcontrib><creatorcontrib>Tanskanen, E. I.</creatorcontrib><creatorcontrib>Viljanen, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Space Weather</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juusola, L.</au><au>Facskó, G.</au><au>Honkonen, I.</au><au>Janhunen, P.</au><au>Vanhamäki, H.</au><au>Kauristie, K.</au><au>Laitinen, T. V.</au><au>Milan, S. E.</au><au>Palmroth, M.</au><au>Tanskanen, E. I.</au><au>Viljanen, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements</atitle><jtitle>Space Weather</jtitle><addtitle>Space Weather</addtitle><date>2014-10</date><risdate>2014</risdate><volume>12</volume><issue>10</issue><spage>582</spage><epage>600</epage><pages>582-600</pages><issn>1542-7390</issn><issn>1539-4964</issn><eissn>1542-7390</eissn><abstract>Understanding the capability of a simulation to reproduce observed features is a requirement for its use in operational space weather forecasting. We compare statistically ionospheric seasonal variations in the Grand Unified Magnetosphere‐Ionosphere Coupling Simulation (GUMICS‐4) global magnetohydrodynamic model with measurements. The GUMICS‐4 data consist of a set of runs that was fed with real solar wind measurements and cover the period of 1 year. Ionospheric convection measurements are from the Super Dual Auroral Radar Network (SuperDARN) radars, and electric currents are derived from the magnetic field measured by the CHAMP satellite. Auroral electrojet indices are used to examine the disturbance magnetic field on ground. The signatures of electrodynamic coupling between the magnetosphere and ionosphere extend to lower latitudes in GUMICS‐4 than in observations, and key features of the auroral ovals—the Region 2 field‐aligned currents, electrojets, Harang discontinuity, and ring of enhanced conductivity—are not properly reproduced. The ground magnetic field is even at best about 5 times weaker than measurements, which can be a problem for forecasting geomagnetically induced currents. According to the measurements, the ionospheric electrostatic potential does not change significantly from winter to summer but field‐aligned currents enhance, whereas in GUMICS‐4, the electrostatic potential weakens from winter to summer but field‐aligned currents do not change. This could be a consequence of the missing Region 2 currents: the Region 1 current has to close with itself across the polar cap, which makes it sensitive to solar UV conductivity. Precipitation energy and conductance peak amplitudes in GUMICS‐4 agree with observations. Key Points One year of GUMICS‐4 MHD simulations are compared with ionospheric observationsKey features of the auroral ovals are not properly reproducedSimulated polar cap potential is sensitive to seasonal variation of solar UV</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014SW001082</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1542-7390
ispartof Space Weather, 2014-10, Vol.12 (10), p.582-600
issn 1542-7390
1539-4964
1542-7390
language eng
recordid cdi_proquest_miscellaneous_1642624113
source Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Grounds
high-latitude ionosphere
Ionosphere
Ionospherics
Magnetic fields
Magnetohydrodynamics
Mathematical models
MHD simulation
Seasonal variations
Simulation
Space weather
title Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20comparison%20of%20seasonal%20variations%20in%20the%20GUMICS-4%20global%20MHD%20model%20ionosphere%20and%20measurements&rft.jtitle=Space%20Weather&rft.au=Juusola,%20L.&rft.date=2014-10&rft.volume=12&rft.issue=10&rft.spage=582&rft.epage=600&rft.pages=582-600&rft.issn=1542-7390&rft.eissn=1542-7390&rft_id=info:doi/10.1002/2014SW001082&rft_dat=%3Cproquest_cross%3E3557571201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645389698&rft_id=info:pmid/&rfr_iscdi=true