The identification of menstrual blood in forensic samples by logistic regression modeling of miRNA expression

We report the identification of sensitive and specific miRNA biomarkers for menstrual blood, a tissue that might provide probative information in certain specialized instances. We incorporated these biomarkers into qPCR assays and developed a quantitative statistical model using logistic regression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2014-11, Vol.35 (21-22), p.3087-3095
Hauptverfasser: Hanson, Erin K., Mirza, Mohid, Rekab, Kamel, Ballantyne, Jack
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3095
container_issue 21-22
container_start_page 3087
container_title Electrophoresis
container_volume 35
creator Hanson, Erin K.
Mirza, Mohid
Rekab, Kamel
Ballantyne, Jack
description We report the identification of sensitive and specific miRNA biomarkers for menstrual blood, a tissue that might provide probative information in certain specialized instances. We incorporated these biomarkers into qPCR assays and developed a quantitative statistical model using logistic regression that permits the prediction of menstrual blood in a forensic sample with a high, and measurable, degree of accuracy. Using the developed model, we achieved 100% accuracy in determining the body fluid of interest for a set of test samples (i.e. samples not used in model development). The development, and details, of the logistic regression model are described. Testing and evaluation of the finalized logistic regression modeled assay using a small number of samples was carried out to preliminarily estimate the limit of detection (LOD), specificity in admixed samples and expression of the menstrual blood miRNA biomarkers throughout the menstrual cycle (25–28 days). The LOD was
doi_str_mv 10.1002/elps.201400171
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642624035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1634499173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4446-3099e9dd7464653eac1312ed89c7aa8f9371472bd16b458d0f798a78a2c492803</originalsourceid><addsrcrecordid>eNqNkTuPEzEUhS0EYsNCS4lc0kzwe-xyFe0GpCi8gra0PDN3gsEzDvZEbP49Dglp2crS8XdOcT-EXlMyp4SwdxB2ec4IFYTQmj5BMyoZq5jS_CmalYhXRHN5hV7k_IMQIowQz9EVk1QorckMDZvvgH0H4-R737rJxxHHHg8w5intXcBNiLHDfsR9TCX0Lc5u2AXIuDngELc-TyVLsE2Q87E9xA6CH7d_Z_yX9Q2Gh9358yV61ruQ4dX5vUbf7m43i_fV6uPyw-JmVbVCCFVxYgyYrquFEkpycC3llEGnTVs7p3vDaypq1nRUNULqjvS10a7WjrXCME34NXp72t2l-GsPebKDzy2E4EaI-2ypEkwxQbh8FMrKqSh9BMqFMKYcvaDzE9qmmHOC3u6SH1w6WErsUZw9irMXcaXw5ry9bwboLvg_UwUQJ-C3D3D4z5y9XX36KplSpVadasUTPFxqLv20qua1tPfrpd3Iz4v79WZpJf8DkUmy9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634499173</pqid></control><display><type>article</type><title>The identification of menstrual blood in forensic samples by logistic regression modeling of miRNA expression</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hanson, Erin K. ; Mirza, Mohid ; Rekab, Kamel ; Ballantyne, Jack</creator><creatorcontrib>Hanson, Erin K. ; Mirza, Mohid ; Rekab, Kamel ; Ballantyne, Jack</creatorcontrib><description>We report the identification of sensitive and specific miRNA biomarkers for menstrual blood, a tissue that might provide probative information in certain specialized instances. We incorporated these biomarkers into qPCR assays and developed a quantitative statistical model using logistic regression that permits the prediction of menstrual blood in a forensic sample with a high, and measurable, degree of accuracy. Using the developed model, we achieved 100% accuracy in determining the body fluid of interest for a set of test samples (i.e. samples not used in model development). The development, and details, of the logistic regression model are described. Testing and evaluation of the finalized logistic regression modeled assay using a small number of samples was carried out to preliminarily estimate the limit of detection (LOD), specificity in admixed samples and expression of the menstrual blood miRNA biomarkers throughout the menstrual cycle (25–28 days). The LOD was &lt;1 ng of total RNA, the assay performed as expected with admixed samples and menstrual blood was identified only during the menses phase of the female reproductive cycle in two donors.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201400171</identifier><identifier>PMID: 25146880</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Blood ; Blood Chemical Analysis - methods ; Body fluid identification ; Body Fluids - chemistry ; Female ; Forensic Genetics - methods ; Forensic science ; Genetic Markers ; Humans ; Limit of Detection ; Logistic Models ; Logistic regression analysis ; Logistics ; Mathematical models ; Menstruation ; MicroRNA (miRNA) ; MicroRNAs - genetics ; Regression ; Reproducibility of Results ; Ribonucleic acids ; RNA profiling ; Samples ; Statistical analysis ; Statistical methods</subject><ispartof>Electrophoresis, 2014-11, Vol.35 (21-22), p.3087-3095</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4446-3099e9dd7464653eac1312ed89c7aa8f9371472bd16b458d0f798a78a2c492803</citedby><cites>FETCH-LOGICAL-c4446-3099e9dd7464653eac1312ed89c7aa8f9371472bd16b458d0f798a78a2c492803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201400171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201400171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25146880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanson, Erin K.</creatorcontrib><creatorcontrib>Mirza, Mohid</creatorcontrib><creatorcontrib>Rekab, Kamel</creatorcontrib><creatorcontrib>Ballantyne, Jack</creatorcontrib><title>The identification of menstrual blood in forensic samples by logistic regression modeling of miRNA expression</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>We report the identification of sensitive and specific miRNA biomarkers for menstrual blood, a tissue that might provide probative information in certain specialized instances. We incorporated these biomarkers into qPCR assays and developed a quantitative statistical model using logistic regression that permits the prediction of menstrual blood in a forensic sample with a high, and measurable, degree of accuracy. Using the developed model, we achieved 100% accuracy in determining the body fluid of interest for a set of test samples (i.e. samples not used in model development). The development, and details, of the logistic regression model are described. Testing and evaluation of the finalized logistic regression modeled assay using a small number of samples was carried out to preliminarily estimate the limit of detection (LOD), specificity in admixed samples and expression of the menstrual blood miRNA biomarkers throughout the menstrual cycle (25–28 days). The LOD was &lt;1 ng of total RNA, the assay performed as expected with admixed samples and menstrual blood was identified only during the menses phase of the female reproductive cycle in two donors.</description><subject>Blood</subject><subject>Blood Chemical Analysis - methods</subject><subject>Body fluid identification</subject><subject>Body Fluids - chemistry</subject><subject>Female</subject><subject>Forensic Genetics - methods</subject><subject>Forensic science</subject><subject>Genetic Markers</subject><subject>Humans</subject><subject>Limit of Detection</subject><subject>Logistic Models</subject><subject>Logistic regression analysis</subject><subject>Logistics</subject><subject>Mathematical models</subject><subject>Menstruation</subject><subject>MicroRNA (miRNA)</subject><subject>MicroRNAs - genetics</subject><subject>Regression</subject><subject>Reproducibility of Results</subject><subject>Ribonucleic acids</subject><subject>RNA profiling</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTuPEzEUhS0EYsNCS4lc0kzwe-xyFe0GpCi8gra0PDN3gsEzDvZEbP49Dglp2crS8XdOcT-EXlMyp4SwdxB2ec4IFYTQmj5BMyoZq5jS_CmalYhXRHN5hV7k_IMQIowQz9EVk1QorckMDZvvgH0H4-R737rJxxHHHg8w5intXcBNiLHDfsR9TCX0Lc5u2AXIuDngELc-TyVLsE2Q87E9xA6CH7d_Z_yX9Q2Gh9358yV61ruQ4dX5vUbf7m43i_fV6uPyw-JmVbVCCFVxYgyYrquFEkpycC3llEGnTVs7p3vDaypq1nRUNULqjvS10a7WjrXCME34NXp72t2l-GsPebKDzy2E4EaI-2ypEkwxQbh8FMrKqSh9BMqFMKYcvaDzE9qmmHOC3u6SH1w6WErsUZw9irMXcaXw5ry9bwboLvg_UwUQJ-C3D3D4z5y9XX36KplSpVadasUTPFxqLv20qua1tPfrpd3Iz4v79WZpJf8DkUmy9w</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Hanson, Erin K.</creator><creator>Mirza, Mohid</creator><creator>Rekab, Kamel</creator><creator>Ballantyne, Jack</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7TM</scope></search><sort><creationdate>201411</creationdate><title>The identification of menstrual blood in forensic samples by logistic regression modeling of miRNA expression</title><author>Hanson, Erin K. ; Mirza, Mohid ; Rekab, Kamel ; Ballantyne, Jack</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4446-3099e9dd7464653eac1312ed89c7aa8f9371472bd16b458d0f798a78a2c492803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blood</topic><topic>Blood Chemical Analysis - methods</topic><topic>Body fluid identification</topic><topic>Body Fluids - chemistry</topic><topic>Female</topic><topic>Forensic Genetics - methods</topic><topic>Forensic science</topic><topic>Genetic Markers</topic><topic>Humans</topic><topic>Limit of Detection</topic><topic>Logistic Models</topic><topic>Logistic regression analysis</topic><topic>Logistics</topic><topic>Mathematical models</topic><topic>Menstruation</topic><topic>MicroRNA (miRNA)</topic><topic>MicroRNAs - genetics</topic><topic>Regression</topic><topic>Reproducibility of Results</topic><topic>Ribonucleic acids</topic><topic>RNA profiling</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanson, Erin K.</creatorcontrib><creatorcontrib>Mirza, Mohid</creatorcontrib><creatorcontrib>Rekab, Kamel</creatorcontrib><creatorcontrib>Ballantyne, Jack</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanson, Erin K.</au><au>Mirza, Mohid</au><au>Rekab, Kamel</au><au>Ballantyne, Jack</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The identification of menstrual blood in forensic samples by logistic regression modeling of miRNA expression</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2014-11</date><risdate>2014</risdate><volume>35</volume><issue>21-22</issue><spage>3087</spage><epage>3095</epage><pages>3087-3095</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>We report the identification of sensitive and specific miRNA biomarkers for menstrual blood, a tissue that might provide probative information in certain specialized instances. We incorporated these biomarkers into qPCR assays and developed a quantitative statistical model using logistic regression that permits the prediction of menstrual blood in a forensic sample with a high, and measurable, degree of accuracy. Using the developed model, we achieved 100% accuracy in determining the body fluid of interest for a set of test samples (i.e. samples not used in model development). The development, and details, of the logistic regression model are described. Testing and evaluation of the finalized logistic regression modeled assay using a small number of samples was carried out to preliminarily estimate the limit of detection (LOD), specificity in admixed samples and expression of the menstrual blood miRNA biomarkers throughout the menstrual cycle (25–28 days). The LOD was &lt;1 ng of total RNA, the assay performed as expected with admixed samples and menstrual blood was identified only during the menses phase of the female reproductive cycle in two donors.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25146880</pmid><doi>10.1002/elps.201400171</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2014-11, Vol.35 (21-22), p.3087-3095
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_1642624035
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Blood
Blood Chemical Analysis - methods
Body fluid identification
Body Fluids - chemistry
Female
Forensic Genetics - methods
Forensic science
Genetic Markers
Humans
Limit of Detection
Logistic Models
Logistic regression analysis
Logistics
Mathematical models
Menstruation
MicroRNA (miRNA)
MicroRNAs - genetics
Regression
Reproducibility of Results
Ribonucleic acids
RNA profiling
Samples
Statistical analysis
Statistical methods
title The identification of menstrual blood in forensic samples by logistic regression modeling of miRNA expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20identification%20of%20menstrual%20blood%20in%20forensic%20samples%20by%20logistic%20regression%20modeling%20of%20miRNA%20expression&rft.jtitle=Electrophoresis&rft.au=Hanson,%20Erin%20K.&rft.date=2014-11&rft.volume=35&rft.issue=21-22&rft.spage=3087&rft.epage=3095&rft.pages=3087-3095&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201400171&rft_dat=%3Cproquest_cross%3E1634499173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634499173&rft_id=info:pmid/25146880&rfr_iscdi=true