Numerical research on the ion-beam-driven hydrodynamic motion of fissile targets for nuclear safety studies

As a method to evaluate high-temperature equation of state (EOS) data of fissile materials precisely and safely, we numerically examined an experimental setup based on a sub-range fissile target and a high-intensity short-pulsed heavy-ion beam. As an example, we calculated one-dimensional hydrodynam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser and particle beams 2014-12, Vol.32 (4), p.665-670
Hauptverfasser: Oguri, Y., Kondo, K., Hasegawa, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 670
container_issue 4
container_start_page 665
container_title Laser and particle beams
container_volume 32
creator Oguri, Y.
Kondo, K.
Hasegawa, J.
description As a method to evaluate high-temperature equation of state (EOS) data of fissile materials precisely and safely, we numerically examined an experimental setup based on a sub-range fissile target and a high-intensity short-pulsed heavy-ion beam. As an example, we calculated one-dimensional hydrodynamic motion of a uranium target with ρ = 0.03ρsolid (ρsolid ≡ solid density = 19.05 g/cm3) induced by a pulsed 23Na+ beam with a duration of 2 ns and a peak power of 5 GW/mm2. The projectile stopping power was calculated using a density- and temperature-dependent dielectric response function. To heat the target uniformly, we optimized the experimental condition so that the energy deposition could occur almost at the top of the Bragg peak. The energy deposition inhomogeneity could be reduced to ±5% by adjusting the incident energy and the target thickness to be 2.02 MeV/u and 180 μm, respectively. The target could be heated homogeneously up to kT =7 eV well before the arrival of the rarefaction waves at the center of the target. In principle, the EOS data can be evaluated by iteratively adjusting the data embedded in the hydro code until the measured hydrodynamic motion is reproduced by the calculation. This method is consistent with the conditions of nuclear nonproliferation, because a very small amount of fissile material is enough to perform the experiment, and no shock compression occurs in the target.
doi_str_mv 10.1017/S0263034614000706
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642619012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263034614000706</cupid><sourcerecordid>1642619012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-a8dd88f4f59d4bca98122db219c626f49df07c05d5f1e059cc7c36aa12aeea4e3</originalsourceid><addsrcrecordid>eNqNkUFP3DAQha0KJLbAD-BmqZdeQmdsx0mOFWoBCdFDi8Qt8trjXdMkBjuptP-eROyhoiriNIf3vU8aPcbOEM4RsPryE4SWIJVGBQAV6A9shUo3RQ3y_oCtlrhY8iP2MeeHmSlLKVbs9-3UUwrWdDxRJpPslseBj1viIQ7FmkxfuBT-0MC3O5ei2w2mD5b3cZxzHj33IefQER9N2tCYuY-JD5PtZhfPxtO443mcXKB8wg696TKd7u8xu_v-7dfFVXHz4_L64utNYUsBY2Fq5-raK182Tq2taWoUwq0FNlYL7VXjPFQWSld6JCgbaysrtTEoDJFRJI_Z5xfvY4pPE-Wx7UO21HVmoDjlFrUSGhtA8S5USI16QT-9Qh_ilIb5kVY0UGE9Y_gWNUu0rCoFiwtfKJtizol8-5hCb9KuRWiXPdt_9pw7ct8x_ToFt6G_1P9tPQMjLKHR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626377402</pqid></control><display><type>article</type><title>Numerical research on the ion-beam-driven hydrodynamic motion of fissile targets for nuclear safety studies</title><source>Cambridge Journals</source><creator>Oguri, Y. ; Kondo, K. ; Hasegawa, J.</creator><creatorcontrib>Oguri, Y. ; Kondo, K. ; Hasegawa, J.</creatorcontrib><description>As a method to evaluate high-temperature equation of state (EOS) data of fissile materials precisely and safely, we numerically examined an experimental setup based on a sub-range fissile target and a high-intensity short-pulsed heavy-ion beam. As an example, we calculated one-dimensional hydrodynamic motion of a uranium target with ρ = 0.03ρsolid (ρsolid ≡ solid density = 19.05 g/cm3) induced by a pulsed 23Na+ beam with a duration of 2 ns and a peak power of 5 GW/mm2. The projectile stopping power was calculated using a density- and temperature-dependent dielectric response function. To heat the target uniformly, we optimized the experimental condition so that the energy deposition could occur almost at the top of the Bragg peak. The energy deposition inhomogeneity could be reduced to ±5% by adjusting the incident energy and the target thickness to be 2.02 MeV/u and 180 μm, respectively. The target could be heated homogeneously up to kT =7 eV well before the arrival of the rarefaction waves at the center of the target. In principle, the EOS data can be evaluated by iteratively adjusting the data embedded in the hydro code until the measured hydrodynamic motion is reproduced by the calculation. This method is consistent with the conditions of nuclear nonproliferation, because a very small amount of fissile material is enough to perform the experiment, and no shock compression occurs in the target.</description><identifier>ISSN: 0263-0346</identifier><identifier>EISSN: 1469-803X</identifier><identifier>DOI: 10.1017/S0263034614000706</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alternative energy ; Beamforming ; Bragg curve ; Computational fluid dynamics ; Density ; Deposition ; Equations of state ; Evaluation ; Fissionable materials ; Fluid flow ; Heavy ions ; High temperature ; Hydrodynamics ; Inhomogeneity ; Ion beams ; Ions ; Mathematical analysis ; Mathematical models ; Nuclear accidents &amp; safety ; Nuclear fuels ; Nuclear power generation ; Nuclear reactors ; Nuclear safety ; Nuclear weapons ; Numerical analysis ; Projectiles ; Rarefaction ; Response functions ; Safety ; Stopping power ; Target thickness ; Temperature ; Temperature dependence ; Uranium</subject><ispartof>Laser and particle beams, 2014-12, Vol.32 (4), p.665-670</ispartof><rights>Copyright © Cambridge University Press 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c520t-a8dd88f4f59d4bca98122db219c626f49df07c05d5f1e059cc7c36aa12aeea4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263034614000706/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Oguri, Y.</creatorcontrib><creatorcontrib>Kondo, K.</creatorcontrib><creatorcontrib>Hasegawa, J.</creatorcontrib><title>Numerical research on the ion-beam-driven hydrodynamic motion of fissile targets for nuclear safety studies</title><title>Laser and particle beams</title><addtitle>Laser Part. Beams</addtitle><description>As a method to evaluate high-temperature equation of state (EOS) data of fissile materials precisely and safely, we numerically examined an experimental setup based on a sub-range fissile target and a high-intensity short-pulsed heavy-ion beam. As an example, we calculated one-dimensional hydrodynamic motion of a uranium target with ρ = 0.03ρsolid (ρsolid ≡ solid density = 19.05 g/cm3) induced by a pulsed 23Na+ beam with a duration of 2 ns and a peak power of 5 GW/mm2. The projectile stopping power was calculated using a density- and temperature-dependent dielectric response function. To heat the target uniformly, we optimized the experimental condition so that the energy deposition could occur almost at the top of the Bragg peak. The energy deposition inhomogeneity could be reduced to ±5% by adjusting the incident energy and the target thickness to be 2.02 MeV/u and 180 μm, respectively. The target could be heated homogeneously up to kT =7 eV well before the arrival of the rarefaction waves at the center of the target. In principle, the EOS data can be evaluated by iteratively adjusting the data embedded in the hydro code until the measured hydrodynamic motion is reproduced by the calculation. This method is consistent with the conditions of nuclear nonproliferation, because a very small amount of fissile material is enough to perform the experiment, and no shock compression occurs in the target.</description><subject>Alternative energy</subject><subject>Beamforming</subject><subject>Bragg curve</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Deposition</subject><subject>Equations of state</subject><subject>Evaluation</subject><subject>Fissionable materials</subject><subject>Fluid flow</subject><subject>Heavy ions</subject><subject>High temperature</subject><subject>Hydrodynamics</subject><subject>Inhomogeneity</subject><subject>Ion beams</subject><subject>Ions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nuclear accidents &amp; safety</subject><subject>Nuclear fuels</subject><subject>Nuclear power generation</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Nuclear weapons</subject><subject>Numerical analysis</subject><subject>Projectiles</subject><subject>Rarefaction</subject><subject>Response functions</subject><subject>Safety</subject><subject>Stopping power</subject><subject>Target thickness</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Uranium</subject><issn>0263-0346</issn><issn>1469-803X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUFP3DAQha0KJLbAD-BmqZdeQmdsx0mOFWoBCdFDi8Qt8trjXdMkBjuptP-eROyhoiriNIf3vU8aPcbOEM4RsPryE4SWIJVGBQAV6A9shUo3RQ3y_oCtlrhY8iP2MeeHmSlLKVbs9-3UUwrWdDxRJpPslseBj1viIQ7FmkxfuBT-0MC3O5ei2w2mD5b3cZxzHj33IefQER9N2tCYuY-JD5PtZhfPxtO443mcXKB8wg696TKd7u8xu_v-7dfFVXHz4_L64utNYUsBY2Fq5-raK182Tq2taWoUwq0FNlYL7VXjPFQWSld6JCgbaysrtTEoDJFRJI_Z5xfvY4pPE-Wx7UO21HVmoDjlFrUSGhtA8S5USI16QT-9Qh_ilIb5kVY0UGE9Y_gWNUu0rCoFiwtfKJtizol8-5hCb9KuRWiXPdt_9pw7ct8x_ToFt6G_1P9tPQMjLKHR</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Oguri, Y.</creator><creator>Kondo, K.</creator><creator>Hasegawa, J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TB</scope><scope>FR3</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20141201</creationdate><title>Numerical research on the ion-beam-driven hydrodynamic motion of fissile targets for nuclear safety studies</title><author>Oguri, Y. ; Kondo, K. ; Hasegawa, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-a8dd88f4f59d4bca98122db219c626f49df07c05d5f1e059cc7c36aa12aeea4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative energy</topic><topic>Beamforming</topic><topic>Bragg curve</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Deposition</topic><topic>Equations of state</topic><topic>Evaluation</topic><topic>Fissionable materials</topic><topic>Fluid flow</topic><topic>Heavy ions</topic><topic>High temperature</topic><topic>Hydrodynamics</topic><topic>Inhomogeneity</topic><topic>Ion beams</topic><topic>Ions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nuclear accidents &amp; safety</topic><topic>Nuclear fuels</topic><topic>Nuclear power generation</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Nuclear weapons</topic><topic>Numerical analysis</topic><topic>Projectiles</topic><topic>Rarefaction</topic><topic>Response functions</topic><topic>Safety</topic><topic>Stopping power</topic><topic>Target thickness</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oguri, Y.</creatorcontrib><creatorcontrib>Kondo, K.</creatorcontrib><creatorcontrib>Hasegawa, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Laser and particle beams</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oguri, Y.</au><au>Kondo, K.</au><au>Hasegawa, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical research on the ion-beam-driven hydrodynamic motion of fissile targets for nuclear safety studies</atitle><jtitle>Laser and particle beams</jtitle><addtitle>Laser Part. Beams</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>32</volume><issue>4</issue><spage>665</spage><epage>670</epage><pages>665-670</pages><issn>0263-0346</issn><eissn>1469-803X</eissn><abstract>As a method to evaluate high-temperature equation of state (EOS) data of fissile materials precisely and safely, we numerically examined an experimental setup based on a sub-range fissile target and a high-intensity short-pulsed heavy-ion beam. As an example, we calculated one-dimensional hydrodynamic motion of a uranium target with ρ = 0.03ρsolid (ρsolid ≡ solid density = 19.05 g/cm3) induced by a pulsed 23Na+ beam with a duration of 2 ns and a peak power of 5 GW/mm2. The projectile stopping power was calculated using a density- and temperature-dependent dielectric response function. To heat the target uniformly, we optimized the experimental condition so that the energy deposition could occur almost at the top of the Bragg peak. The energy deposition inhomogeneity could be reduced to ±5% by adjusting the incident energy and the target thickness to be 2.02 MeV/u and 180 μm, respectively. The target could be heated homogeneously up to kT =7 eV well before the arrival of the rarefaction waves at the center of the target. In principle, the EOS data can be evaluated by iteratively adjusting the data embedded in the hydro code until the measured hydrodynamic motion is reproduced by the calculation. This method is consistent with the conditions of nuclear nonproliferation, because a very small amount of fissile material is enough to perform the experiment, and no shock compression occurs in the target.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263034614000706</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-0346
ispartof Laser and particle beams, 2014-12, Vol.32 (4), p.665-670
issn 0263-0346
1469-803X
language eng
recordid cdi_proquest_miscellaneous_1642619012
source Cambridge Journals
subjects Alternative energy
Beamforming
Bragg curve
Computational fluid dynamics
Density
Deposition
Equations of state
Evaluation
Fissionable materials
Fluid flow
Heavy ions
High temperature
Hydrodynamics
Inhomogeneity
Ion beams
Ions
Mathematical analysis
Mathematical models
Nuclear accidents & safety
Nuclear fuels
Nuclear power generation
Nuclear reactors
Nuclear safety
Nuclear weapons
Numerical analysis
Projectiles
Rarefaction
Response functions
Safety
Stopping power
Target thickness
Temperature
Temperature dependence
Uranium
title Numerical research on the ion-beam-driven hydrodynamic motion of fissile targets for nuclear safety studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20research%20on%20the%20ion-beam-driven%20hydrodynamic%20motion%20of%20fissile%20targets%20for%20nuclear%20safety%20studies&rft.jtitle=Laser%20and%20particle%20beams&rft.au=Oguri,%20Y.&rft.date=2014-12-01&rft.volume=32&rft.issue=4&rft.spage=665&rft.epage=670&rft.pages=665-670&rft.issn=0263-0346&rft.eissn=1469-803X&rft_id=info:doi/10.1017/S0263034614000706&rft_dat=%3Cproquest_cross%3E1642619012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626377402&rft_id=info:pmid/&rft_cupid=10_1017_S0263034614000706&rfr_iscdi=true