Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus)

Introgression of mitochondrial DNA (mtDNA) between closely related taxa can be promoted by either neutral processes or natural selection. Since mitochondrial gene-encoded proteins play critical roles in oxidative metabolism, mtDNA genes are commonly considered to experience strong selective constrai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetica 2014-12, Vol.142 (6), p.483-494
Hauptverfasser: Dong, Ji, Mao, Xiuguang, Sun, Haijian, Irwin, David M, Zhang, Shuyi, Hua, Panyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494
container_issue 6
container_start_page 483
container_title Genetica
container_volume 142
creator Dong, Ji
Mao, Xiuguang
Sun, Haijian
Irwin, David M
Zhang, Shuyi
Hua, Panyu
description Introgression of mitochondrial DNA (mtDNA) between closely related taxa can be promoted by either neutral processes or natural selection. Since mitochondrial gene-encoded proteins play critical roles in oxidative metabolism, mtDNA genes are commonly considered to experience strong selective constraint. However, metabolic requirements vary across climatic and ecological gradients, thus modifying potential selective pressures acting on mtDNA genes. Here we conducted tests to detect adaptive evolution occurring in two mtDNA genes (Cytb and ND5) in individuals of Japanese pipistrelle bat (Pipistrellus abramus) across the mainland of China and Hainan Island. Nuclear DNA markers identified two clades in both the mainland and Hainan Island populations, whereas each of these regions had a specific mtDNA clade. This cyto-nuclear discordance is most likely caused by introgression of the mtDNA by ruling out two other alternative scenarios (incomplete lineage sorting and sex-biased gene flow). Although population-based analyses revealed purifying selection acting on Cytb and neutrality in ND5, multiple nonsynonymous substitutions in both Cytb and ND5 were suggested to have been caused by positive selection by a divergence-based analysis. Our study supports the view that molecular adaptation can occur at genes under strong purifying selection if nonsynonymous substitutions cause radical changes in the physicochemical properties of amino acids.
doi_str_mv 10.1007/s10709-014-9794-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642617485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1634278855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-4ca3a9652b0230b344722687286e3026b388e95faf7a3f260db3526513d7c6993</originalsourceid><addsrcrecordid>eNqNkstu1jAQhS1ERX8KD8AGLLEpi5Tx3V5W5daqKkjQteUkzt9USZzajlDfHkcpFWKBWFkaf2dmjs4g9IrACQFQ7xMBBaYCwiujDK_IE7QjQrFKaqGeoh0AkZVUoA7R85RuAcAoaZ6hQyqoXOs79PN8yjHso0-pDxMOHR77HJqbMLWxdwP-cHWK5xjGkH2L63s8ubzEUk9-8E1eJf2E843HF252k08ez_3cpxz9MHhcu4yPvz0WloRdHd24pHcv0EHnhuRfPrxH6PrTxx9nX6rLr5_Pz04vq4YbkyveOOaMFLQGyqBmnCtKpVZUS8-Ayppp7Y3oXKcc66iEtmbFmyCsVY00hh2h461vMXG3-JTt2Kem7FKWDUuyRHIqieJa_AfKOFVaixV9-xd6G5Y4FSMrBURpI9fZZKOaGFKKvrNz7EcX7y0BuwZotwBtCdCuAVpSNK8fOi_16NtHxe_ECkA3IJWvae_jH6P_0fXNJupcsG4f-2Svv1MgolwIUCE4-wUup64y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1630178969</pqid></control><display><type>article</type><title>Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus)</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Ji ; Mao, Xiuguang ; Sun, Haijian ; Irwin, David M ; Zhang, Shuyi ; Hua, Panyu</creator><creatorcontrib>Dong, Ji ; Mao, Xiuguang ; Sun, Haijian ; Irwin, David M ; Zhang, Shuyi ; Hua, Panyu</creatorcontrib><description>Introgression of mitochondrial DNA (mtDNA) between closely related taxa can be promoted by either neutral processes or natural selection. Since mitochondrial gene-encoded proteins play critical roles in oxidative metabolism, mtDNA genes are commonly considered to experience strong selective constraint. However, metabolic requirements vary across climatic and ecological gradients, thus modifying potential selective pressures acting on mtDNA genes. Here we conducted tests to detect adaptive evolution occurring in two mtDNA genes (Cytb and ND5) in individuals of Japanese pipistrelle bat (Pipistrellus abramus) across the mainland of China and Hainan Island. Nuclear DNA markers identified two clades in both the mainland and Hainan Island populations, whereas each of these regions had a specific mtDNA clade. This cyto-nuclear discordance is most likely caused by introgression of the mtDNA by ruling out two other alternative scenarios (incomplete lineage sorting and sex-biased gene flow). Although population-based analyses revealed purifying selection acting on Cytb and neutrality in ND5, multiple nonsynonymous substitutions in both Cytb and ND5 were suggested to have been caused by positive selection by a divergence-based analysis. Our study supports the view that molecular adaptation can occur at genes under strong purifying selection if nonsynonymous substitutions cause radical changes in the physicochemical properties of amino acids.</description><identifier>ISSN: 0016-6707</identifier><identifier>EISSN: 1573-6857</identifier><identifier>DOI: 10.1007/s10709-014-9794-1</identifier><identifier>PMID: 25266707</identifier><language>eng</language><publisher>Cham: Springer-Verlag</publisher><subject>aerobiosis ; Amino acids ; Animal Genetics and Genomics ; Animals ; Bayes Theorem ; Biomedical and Life Sciences ; Cell Nucleus - genetics ; China ; Chiroptera - genetics ; DNA, Mitochondrial - genetics ; Evolution, Molecular ; Evolutionary Biology ; gene flow ; genes ; genetic markers ; Genetics, Population ; Haplotypes ; Human Genetics ; introgression ; Islands ; Life Sciences ; Microbial Genetics and Genomics ; Mitochondrial DNA ; Models, Genetic ; natural selection ; nuclear genome ; Phylogeny ; Physicochemical properties ; Pipistrellus ; Plant Genetics and Genomics ; proteins ; Selection, Genetic ; Sequence Analysis, DNA</subject><ispartof>Genetica, 2014-12, Vol.142 (6), p.483-494</ispartof><rights>Springer International Publishing Switzerland 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-4ca3a9652b0230b344722687286e3026b388e95faf7a3f260db3526513d7c6993</citedby><cites>FETCH-LOGICAL-c499t-4ca3a9652b0230b344722687286e3026b388e95faf7a3f260db3526513d7c6993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10709-014-9794-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10709-014-9794-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25266707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Ji</creatorcontrib><creatorcontrib>Mao, Xiuguang</creatorcontrib><creatorcontrib>Sun, Haijian</creatorcontrib><creatorcontrib>Irwin, David M</creatorcontrib><creatorcontrib>Zhang, Shuyi</creatorcontrib><creatorcontrib>Hua, Panyu</creatorcontrib><title>Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus)</title><title>Genetica</title><addtitle>Genetica</addtitle><addtitle>Genetica</addtitle><description>Introgression of mitochondrial DNA (mtDNA) between closely related taxa can be promoted by either neutral processes or natural selection. Since mitochondrial gene-encoded proteins play critical roles in oxidative metabolism, mtDNA genes are commonly considered to experience strong selective constraint. However, metabolic requirements vary across climatic and ecological gradients, thus modifying potential selective pressures acting on mtDNA genes. Here we conducted tests to detect adaptive evolution occurring in two mtDNA genes (Cytb and ND5) in individuals of Japanese pipistrelle bat (Pipistrellus abramus) across the mainland of China and Hainan Island. Nuclear DNA markers identified two clades in both the mainland and Hainan Island populations, whereas each of these regions had a specific mtDNA clade. This cyto-nuclear discordance is most likely caused by introgression of the mtDNA by ruling out two other alternative scenarios (incomplete lineage sorting and sex-biased gene flow). Although population-based analyses revealed purifying selection acting on Cytb and neutrality in ND5, multiple nonsynonymous substitutions in both Cytb and ND5 were suggested to have been caused by positive selection by a divergence-based analysis. Our study supports the view that molecular adaptation can occur at genes under strong purifying selection if nonsynonymous substitutions cause radical changes in the physicochemical properties of amino acids.</description><subject>aerobiosis</subject><subject>Amino acids</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Nucleus - genetics</subject><subject>China</subject><subject>Chiroptera - genetics</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology</subject><subject>gene flow</subject><subject>genes</subject><subject>genetic markers</subject><subject>Genetics, Population</subject><subject>Haplotypes</subject><subject>Human Genetics</subject><subject>introgression</subject><subject>Islands</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Mitochondrial DNA</subject><subject>Models, Genetic</subject><subject>natural selection</subject><subject>nuclear genome</subject><subject>Phylogeny</subject><subject>Physicochemical properties</subject><subject>Pipistrellus</subject><subject>Plant Genetics and Genomics</subject><subject>proteins</subject><subject>Selection, Genetic</subject><subject>Sequence Analysis, DNA</subject><issn>0016-6707</issn><issn>1573-6857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkstu1jAQhS1ERX8KD8AGLLEpi5Tx3V5W5daqKkjQteUkzt9USZzajlDfHkcpFWKBWFkaf2dmjs4g9IrACQFQ7xMBBaYCwiujDK_IE7QjQrFKaqGeoh0AkZVUoA7R85RuAcAoaZ6hQyqoXOs79PN8yjHso0-pDxMOHR77HJqbMLWxdwP-cHWK5xjGkH2L63s8ubzEUk9-8E1eJf2E843HF252k08ez_3cpxz9MHhcu4yPvz0WloRdHd24pHcv0EHnhuRfPrxH6PrTxx9nX6rLr5_Pz04vq4YbkyveOOaMFLQGyqBmnCtKpVZUS8-Ayppp7Y3oXKcc66iEtmbFmyCsVY00hh2h461vMXG3-JTt2Kem7FKWDUuyRHIqieJa_AfKOFVaixV9-xd6G5Y4FSMrBURpI9fZZKOaGFKKvrNz7EcX7y0BuwZotwBtCdCuAVpSNK8fOi_16NtHxe_ECkA3IJWvae_jH6P_0fXNJupcsG4f-2Svv1MgolwIUCE4-wUup64y</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Dong, Ji</creator><creator>Mao, Xiuguang</creator><creator>Sun, Haijian</creator><creator>Irwin, David M</creator><creator>Zhang, Shuyi</creator><creator>Hua, Panyu</creator><general>Springer-Verlag</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20141201</creationdate><title>Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus)</title><author>Dong, Ji ; Mao, Xiuguang ; Sun, Haijian ; Irwin, David M ; Zhang, Shuyi ; Hua, Panyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-4ca3a9652b0230b344722687286e3026b388e95faf7a3f260db3526513d7c6993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>aerobiosis</topic><topic>Amino acids</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Nucleus - genetics</topic><topic>China</topic><topic>Chiroptera - genetics</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology</topic><topic>gene flow</topic><topic>genes</topic><topic>genetic markers</topic><topic>Genetics, Population</topic><topic>Haplotypes</topic><topic>Human Genetics</topic><topic>introgression</topic><topic>Islands</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Mitochondrial DNA</topic><topic>Models, Genetic</topic><topic>natural selection</topic><topic>nuclear genome</topic><topic>Phylogeny</topic><topic>Physicochemical properties</topic><topic>Pipistrellus</topic><topic>Plant Genetics and Genomics</topic><topic>proteins</topic><topic>Selection, Genetic</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Ji</creatorcontrib><creatorcontrib>Mao, Xiuguang</creatorcontrib><creatorcontrib>Sun, Haijian</creatorcontrib><creatorcontrib>Irwin, David M</creatorcontrib><creatorcontrib>Zhang, Shuyi</creatorcontrib><creatorcontrib>Hua, Panyu</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Genetica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Ji</au><au>Mao, Xiuguang</au><au>Sun, Haijian</au><au>Irwin, David M</au><au>Zhang, Shuyi</au><au>Hua, Panyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus)</atitle><jtitle>Genetica</jtitle><stitle>Genetica</stitle><addtitle>Genetica</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>142</volume><issue>6</issue><spage>483</spage><epage>494</epage><pages>483-494</pages><issn>0016-6707</issn><eissn>1573-6857</eissn><abstract>Introgression of mitochondrial DNA (mtDNA) between closely related taxa can be promoted by either neutral processes or natural selection. Since mitochondrial gene-encoded proteins play critical roles in oxidative metabolism, mtDNA genes are commonly considered to experience strong selective constraint. However, metabolic requirements vary across climatic and ecological gradients, thus modifying potential selective pressures acting on mtDNA genes. Here we conducted tests to detect adaptive evolution occurring in two mtDNA genes (Cytb and ND5) in individuals of Japanese pipistrelle bat (Pipistrellus abramus) across the mainland of China and Hainan Island. Nuclear DNA markers identified two clades in both the mainland and Hainan Island populations, whereas each of these regions had a specific mtDNA clade. This cyto-nuclear discordance is most likely caused by introgression of the mtDNA by ruling out two other alternative scenarios (incomplete lineage sorting and sex-biased gene flow). Although population-based analyses revealed purifying selection acting on Cytb and neutrality in ND5, multiple nonsynonymous substitutions in both Cytb and ND5 were suggested to have been caused by positive selection by a divergence-based analysis. Our study supports the view that molecular adaptation can occur at genes under strong purifying selection if nonsynonymous substitutions cause radical changes in the physicochemical properties of amino acids.</abstract><cop>Cham</cop><pub>Springer-Verlag</pub><pmid>25266707</pmid><doi>10.1007/s10709-014-9794-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-6707
ispartof Genetica, 2014-12, Vol.142 (6), p.483-494
issn 0016-6707
1573-6857
language eng
recordid cdi_proquest_miscellaneous_1642617485
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects aerobiosis
Amino acids
Animal Genetics and Genomics
Animals
Bayes Theorem
Biomedical and Life Sciences
Cell Nucleus - genetics
China
Chiroptera - genetics
DNA, Mitochondrial - genetics
Evolution, Molecular
Evolutionary Biology
gene flow
genes
genetic markers
Genetics, Population
Haplotypes
Human Genetics
introgression
Islands
Life Sciences
Microbial Genetics and Genomics
Mitochondrial DNA
Models, Genetic
natural selection
nuclear genome
Phylogeny
Physicochemical properties
Pipistrellus
Plant Genetics and Genomics
proteins
Selection, Genetic
Sequence Analysis, DNA
title Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introgression%20of%20mitochondrial%20DNA%20promoted%20by%20natural%20selection%20in%20the%20Japanese%20pipistrelle%20bat%20(Pipistrellus%20abramus)&rft.jtitle=Genetica&rft.au=Dong,%20Ji&rft.date=2014-12-01&rft.volume=142&rft.issue=6&rft.spage=483&rft.epage=494&rft.pages=483-494&rft.issn=0016-6707&rft.eissn=1573-6857&rft_id=info:doi/10.1007/s10709-014-9794-1&rft_dat=%3Cproquest_cross%3E1634278855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1630178969&rft_id=info:pmid/25266707&rfr_iscdi=true