Consistency of Estimated Global Water Cycle Variations over the Satellite Era

Motivated by the question of whether recent interannual to decadal climate variability and a possible “climate shift” may have affected the global water balance, we examine precipitation minus evaporation (P – E) variability integrated over the global oceans and global land for the period 1979–2010...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2014-08, Vol.27 (16), p.6135-6154
Hauptverfasser: Robertson, F. R., Bosilovich, M. G., Roberts, J. B., Reichle, R. H., Adler, R., Ricciardulli, L., Berg, W., Huffman, G. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6154
container_issue 16
container_start_page 6135
container_title Journal of climate
container_volume 27
creator Robertson, F. R.
Bosilovich, M. G.
Roberts, J. B.
Reichle, R. H.
Adler, R.
Ricciardulli, L.
Berg, W.
Huffman, G. J.
description Motivated by the question of whether recent interannual to decadal climate variability and a possible “climate shift” may have affected the global water balance, we examine precipitation minus evaporation (P – E) variability integrated over the global oceans and global land for the period 1979–2010 from three points of view—remotely sensed retrievals and syntheses over the oceans, reanalysis vertically integrated moisture flux convergence (VMFC) over land, and land surface models (LSMs) forced with observations-based precipitation, radiation, and near-surface meteorology. Over land, reanalysis VMFC andP– evapotranspiration (ET) from observationally forced LSMs agree on interannual variations (e.g., El Niño/La Niña events); however, reanalyses exhibit upward VMFC trends 3–4 times larger thanP– ET trends of the LSMs. Experiments with other reanalyses using reduced observations show that upward VMFC trends in the full reanalyses are due largely to observing system changes interacting with assimilation model physics. The much smallerP– ET trend in the LSMs appears due to changes in frequency and amplitude of warm events after the 1997/98 El Niño, a result consistent with coolness in the eastern tropical Pacific sea surface temperature (SST) after that date. When integrated over the global oceans,Eand especiallyPvariations show consistent signals of El Niño/La Niña events. However, at scales longer than interannual there is considerable uncertainty especially inE. This results from differences among datasets in near-surface atmospheric specific humidity and wind speed used in bulk aerodynamic retrievals. ThePvariations, all relying substantially on passive microwave retrievals over ocean, also have uncertainties in decadal variability, but to a smaller degree.
doi_str_mv 10.1175/jcli-d-13-00384.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642333019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26193763</jstor_id><sourcerecordid>26193763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-bba6c559748e5f4735fe80e65bcc11c5c86837af0561d5748cac9c769db1b3103</originalsourceid><addsrcrecordid>eNqFkUtrGzEQx0Vooa7bD9BDQFAKuWyqkTSS9lg2zguXHvo6Cq2spWs2q1SSA_72UeqQQg_NaV6_-TMPQt4BOwXQ-HHrp7HZNCAaxoSRp3BEFoCcNUxK_oIsmGllYzTiK_I65y1jwBVjC_K5i3Mecwmz39M40FUu440rYUMvpti7if6sQaLd3k-B_nBpdGWsHTTe1Wz5FejXWp-msQS6Su4NeTm4KYe3j3ZJvp-vvnWXzfrLxVX3ad145KY0fe-UR2y1NAEHqQUOwbCgsPcewKM3ygjtBoYKNlgp73zrtWo3PfQCmFiSk4PubYq_dyEXezNmX-dwc4i7bEFJLoRg0D6PomIAiktZ0ff_oNu4S3NdxHIDApXhXP-PAkShEYzESsGB8inmnMJgb1M9bNpbYPbhY_a6W1_ZMwvC_vlYdZbkw6Oyy95NQ3KzH_NTIzdaCGMe5jw-cNtcYvpbV3VdrYS4B26xnYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553751845</pqid></control><display><type>article</type><title>Consistency of Estimated Global Water Cycle Variations over the Satellite Era</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Robertson, F. R. ; Bosilovich, M. G. ; Roberts, J. B. ; Reichle, R. H. ; Adler, R. ; Ricciardulli, L. ; Berg, W. ; Huffman, G. J.</creator><creatorcontrib>Robertson, F. R. ; Bosilovich, M. G. ; Roberts, J. B. ; Reichle, R. H. ; Adler, R. ; Ricciardulli, L. ; Berg, W. ; Huffman, G. J.</creatorcontrib><description>Motivated by the question of whether recent interannual to decadal climate variability and a possible “climate shift” may have affected the global water balance, we examine precipitation minus evaporation (P – E) variability integrated over the global oceans and global land for the period 1979–2010 from three points of view—remotely sensed retrievals and syntheses over the oceans, reanalysis vertically integrated moisture flux convergence (VMFC) over land, and land surface models (LSMs) forced with observations-based precipitation, radiation, and near-surface meteorology. Over land, reanalysis VMFC andP– evapotranspiration (ET) from observationally forced LSMs agree on interannual variations (e.g., El Niño/La Niña events); however, reanalyses exhibit upward VMFC trends 3–4 times larger thanP– ET trends of the LSMs. Experiments with other reanalyses using reduced observations show that upward VMFC trends in the full reanalyses are due largely to observing system changes interacting with assimilation model physics. The much smallerP– ET trend in the LSMs appears due to changes in frequency and amplitude of warm events after the 1997/98 El Niño, a result consistent with coolness in the eastern tropical Pacific sea surface temperature (SST) after that date. When integrated over the global oceans,Eand especiallyPvariations show consistent signals of El Niño/La Niña events. However, at scales longer than interannual there is considerable uncertainty especially inE. This results from differences among datasets in near-surface atmospheric specific humidity and wind speed used in bulk aerodynamic retrievals. ThePvariations, all relying substantially on passive microwave retrievals over ocean, also have uncertainties in decadal variability, but to a smaller degree.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-13-00384.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Accuracy ; Algorithms ; Annual variations ; Atmospheric models ; Atmospheric moisture ; Biogeochemistry ; Budgets ; Climate ; Climate change ; Climate variability ; Climatology. Bioclimatology. Climate change ; Consistency ; Convergence ; Datasets ; Earth, ocean, space ; El Nino ; El Nino phenomena ; Evaporation ; Evapotranspiration ; Evapotranspiration trends ; Exact sciences and technology ; External geophysics ; Flux ; Global climate models ; Global water balance ; Hydrologic cycle ; Hydrological cycle ; Interannual variations ; La Nina ; La Nina events ; Land ; Land area ; Land surface models ; Marine ; Meteorological satellites ; Meteorology ; Moisture effects ; Moisture flux ; Oceans ; Physics ; Precipitation ; Radiation ; Remote sensing ; Remote sensing systems ; Sea surface ; Sea surface temperature ; Sensors ; Specific humidity ; Surface temperature ; Trends ; Uncertainty ; Variability ; Variation ; Water balance ; Water cycle ; Water in the atmosphere (humidity, clouds, evaporation, precipitation) ; Wind speed ; Wind velocity</subject><ispartof>Journal of climate, 2014-08, Vol.27 (16), p.6135-6154</ispartof><rights>2014 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Aug 15, 2014</rights><rights>Copyright American Meteorological Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-bba6c559748e5f4735fe80e65bcc11c5c86837af0561d5748cac9c769db1b3103</citedby><cites>FETCH-LOGICAL-c528t-bba6c559748e5f4735fe80e65bcc11c5c86837af0561d5748cac9c769db1b3103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26193763$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26193763$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28733884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Robertson, F. R.</creatorcontrib><creatorcontrib>Bosilovich, M. G.</creatorcontrib><creatorcontrib>Roberts, J. B.</creatorcontrib><creatorcontrib>Reichle, R. H.</creatorcontrib><creatorcontrib>Adler, R.</creatorcontrib><creatorcontrib>Ricciardulli, L.</creatorcontrib><creatorcontrib>Berg, W.</creatorcontrib><creatorcontrib>Huffman, G. J.</creatorcontrib><title>Consistency of Estimated Global Water Cycle Variations over the Satellite Era</title><title>Journal of climate</title><description>Motivated by the question of whether recent interannual to decadal climate variability and a possible “climate shift” may have affected the global water balance, we examine precipitation minus evaporation (P – E) variability integrated over the global oceans and global land for the period 1979–2010 from three points of view—remotely sensed retrievals and syntheses over the oceans, reanalysis vertically integrated moisture flux convergence (VMFC) over land, and land surface models (LSMs) forced with observations-based precipitation, radiation, and near-surface meteorology. Over land, reanalysis VMFC andP– evapotranspiration (ET) from observationally forced LSMs agree on interannual variations (e.g., El Niño/La Niña events); however, reanalyses exhibit upward VMFC trends 3–4 times larger thanP– ET trends of the LSMs. Experiments with other reanalyses using reduced observations show that upward VMFC trends in the full reanalyses are due largely to observing system changes interacting with assimilation model physics. The much smallerP– ET trend in the LSMs appears due to changes in frequency and amplitude of warm events after the 1997/98 El Niño, a result consistent with coolness in the eastern tropical Pacific sea surface temperature (SST) after that date. When integrated over the global oceans,Eand especiallyPvariations show consistent signals of El Niño/La Niña events. However, at scales longer than interannual there is considerable uncertainty especially inE. This results from differences among datasets in near-surface atmospheric specific humidity and wind speed used in bulk aerodynamic retrievals. ThePvariations, all relying substantially on passive microwave retrievals over ocean, also have uncertainties in decadal variability, but to a smaller degree.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Annual variations</subject><subject>Atmospheric models</subject><subject>Atmospheric moisture</subject><subject>Biogeochemistry</subject><subject>Budgets</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate variability</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Consistency</subject><subject>Convergence</subject><subject>Datasets</subject><subject>Earth, ocean, space</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>Evaporation</subject><subject>Evapotranspiration</subject><subject>Evapotranspiration trends</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Flux</subject><subject>Global climate models</subject><subject>Global water balance</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Interannual variations</subject><subject>La Nina</subject><subject>La Nina events</subject><subject>Land</subject><subject>Land area</subject><subject>Land surface models</subject><subject>Marine</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Moisture effects</subject><subject>Moisture flux</subject><subject>Oceans</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Remote sensing systems</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Sensors</subject><subject>Specific humidity</subject><subject>Surface temperature</subject><subject>Trends</subject><subject>Uncertainty</subject><subject>Variability</subject><subject>Variation</subject><subject>Water balance</subject><subject>Water cycle</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><subject>Wind speed</subject><subject>Wind velocity</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtrGzEQx0Vooa7bD9BDQFAKuWyqkTSS9lg2zguXHvo6Cq2spWs2q1SSA_72UeqQQg_NaV6_-TMPQt4BOwXQ-HHrp7HZNCAaxoSRp3BEFoCcNUxK_oIsmGllYzTiK_I65y1jwBVjC_K5i3Mecwmz39M40FUu440rYUMvpti7if6sQaLd3k-B_nBpdGWsHTTe1Wz5FejXWp-msQS6Su4NeTm4KYe3j3ZJvp-vvnWXzfrLxVX3ad145KY0fe-UR2y1NAEHqQUOwbCgsPcewKM3ygjtBoYKNlgp73zrtWo3PfQCmFiSk4PubYq_dyEXezNmX-dwc4i7bEFJLoRg0D6PomIAiktZ0ff_oNu4S3NdxHIDApXhXP-PAkShEYzESsGB8inmnMJgb1M9bNpbYPbhY_a6W1_ZMwvC_vlYdZbkw6Oyy95NQ3KzH_NTIzdaCGMe5jw-cNtcYvpbV3VdrYS4B26xnYc</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Robertson, F. R.</creator><creator>Bosilovich, M. G.</creator><creator>Roberts, J. B.</creator><creator>Reichle, R. H.</creator><creator>Adler, R.</creator><creator>Ricciardulli, L.</creator><creator>Berg, W.</creator><creator>Huffman, G. J.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140815</creationdate><title>Consistency of Estimated Global Water Cycle Variations over the Satellite Era</title><author>Robertson, F. R. ; Bosilovich, M. G. ; Roberts, J. B. ; Reichle, R. H. ; Adler, R. ; Ricciardulli, L. ; Berg, W. ; Huffman, G. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-bba6c559748e5f4735fe80e65bcc11c5c86837af0561d5748cac9c769db1b3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Annual variations</topic><topic>Atmospheric models</topic><topic>Atmospheric moisture</topic><topic>Biogeochemistry</topic><topic>Budgets</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate variability</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Consistency</topic><topic>Convergence</topic><topic>Datasets</topic><topic>Earth, ocean, space</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>Evaporation</topic><topic>Evapotranspiration</topic><topic>Evapotranspiration trends</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Flux</topic><topic>Global climate models</topic><topic>Global water balance</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Interannual variations</topic><topic>La Nina</topic><topic>La Nina events</topic><topic>Land</topic><topic>Land area</topic><topic>Land surface models</topic><topic>Marine</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Moisture effects</topic><topic>Moisture flux</topic><topic>Oceans</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Remote sensing systems</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Sensors</topic><topic>Specific humidity</topic><topic>Surface temperature</topic><topic>Trends</topic><topic>Uncertainty</topic><topic>Variability</topic><topic>Variation</topic><topic>Water balance</topic><topic>Water cycle</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><topic>Wind speed</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robertson, F. R.</creatorcontrib><creatorcontrib>Bosilovich, M. G.</creatorcontrib><creatorcontrib>Roberts, J. B.</creatorcontrib><creatorcontrib>Reichle, R. H.</creatorcontrib><creatorcontrib>Adler, R.</creatorcontrib><creatorcontrib>Ricciardulli, L.</creatorcontrib><creatorcontrib>Berg, W.</creatorcontrib><creatorcontrib>Huffman, G. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson, F. R.</au><au>Bosilovich, M. G.</au><au>Roberts, J. B.</au><au>Reichle, R. H.</au><au>Adler, R.</au><au>Ricciardulli, L.</au><au>Berg, W.</au><au>Huffman, G. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistency of Estimated Global Water Cycle Variations over the Satellite Era</atitle><jtitle>Journal of climate</jtitle><date>2014-08-15</date><risdate>2014</risdate><volume>27</volume><issue>16</issue><spage>6135</spage><epage>6154</epage><pages>6135-6154</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Motivated by the question of whether recent interannual to decadal climate variability and a possible “climate shift” may have affected the global water balance, we examine precipitation minus evaporation (P – E) variability integrated over the global oceans and global land for the period 1979–2010 from three points of view—remotely sensed retrievals and syntheses over the oceans, reanalysis vertically integrated moisture flux convergence (VMFC) over land, and land surface models (LSMs) forced with observations-based precipitation, radiation, and near-surface meteorology. Over land, reanalysis VMFC andP– evapotranspiration (ET) from observationally forced LSMs agree on interannual variations (e.g., El Niño/La Niña events); however, reanalyses exhibit upward VMFC trends 3–4 times larger thanP– ET trends of the LSMs. Experiments with other reanalyses using reduced observations show that upward VMFC trends in the full reanalyses are due largely to observing system changes interacting with assimilation model physics. The much smallerP– ET trend in the LSMs appears due to changes in frequency and amplitude of warm events after the 1997/98 El Niño, a result consistent with coolness in the eastern tropical Pacific sea surface temperature (SST) after that date. When integrated over the global oceans,Eand especiallyPvariations show consistent signals of El Niño/La Niña events. However, at scales longer than interannual there is considerable uncertainty especially inE. This results from differences among datasets in near-surface atmospheric specific humidity and wind speed used in bulk aerodynamic retrievals. ThePvariations, all relying substantially on passive microwave retrievals over ocean, also have uncertainties in decadal variability, but to a smaller degree.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-13-00384.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2014-08, Vol.27 (16), p.6135-6154
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_1642333019
source Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Algorithms
Annual variations
Atmospheric models
Atmospheric moisture
Biogeochemistry
Budgets
Climate
Climate change
Climate variability
Climatology. Bioclimatology. Climate change
Consistency
Convergence
Datasets
Earth, ocean, space
El Nino
El Nino phenomena
Evaporation
Evapotranspiration
Evapotranspiration trends
Exact sciences and technology
External geophysics
Flux
Global climate models
Global water balance
Hydrologic cycle
Hydrological cycle
Interannual variations
La Nina
La Nina events
Land
Land area
Land surface models
Marine
Meteorological satellites
Meteorology
Moisture effects
Moisture flux
Oceans
Physics
Precipitation
Radiation
Remote sensing
Remote sensing systems
Sea surface
Sea surface temperature
Sensors
Specific humidity
Surface temperature
Trends
Uncertainty
Variability
Variation
Water balance
Water cycle
Water in the atmosphere (humidity, clouds, evaporation, precipitation)
Wind speed
Wind velocity
title Consistency of Estimated Global Water Cycle Variations over the Satellite Era
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistency%20of%20Estimated%20Global%20Water%20Cycle%20Variations%20over%20the%20Satellite%20Era&rft.jtitle=Journal%20of%20climate&rft.au=Robertson,%20F.%20R.&rft.date=2014-08-15&rft.volume=27&rft.issue=16&rft.spage=6135&rft.epage=6154&rft.pages=6135-6154&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-13-00384.1&rft_dat=%3Cjstor_proqu%3E26193763%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553751845&rft_id=info:pmid/&rft_jstor_id=26193763&rfr_iscdi=true