Confidence regions for the level curves of spatial data

Contour plots are often used by environmental scientists to display the distribution of a variable over a two‐dimensional region of interest, but the uncertainty associated with the estimated level curves seldom receives attention. Few methods are available for identifying the true level curve with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmetrics (London, Ont.) Ont.), 2014-11, Vol.25 (7), p.498-512
1. Verfasser: French, Joshua P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512
container_issue 7
container_start_page 498
container_title Environmetrics (London, Ont.)
container_volume 25
creator French, Joshua P.
description Contour plots are often used by environmental scientists to display the distribution of a variable over a two‐dimensional region of interest, but the uncertainty associated with the estimated level curves seldom receives attention. Few methods are available for identifying the true level curve with quantifiable confidence, and typically, these methods only deal with the uncertainty at individual locations. Methodology is introduced for constructing a confidence region for the entire level curve of a Gaussian random field at a specified level. The methodology utilizes common geostatistical methods to produce confidence regions containing the entire level curve with high confidence. The validity of this approach is investigated using simulation studies involving several covariance functions, dependence levels, and response quantiles. This methodology is then applied in constructing a confidence region for a level curve of the total monthly precipitation for the state of Colorado in May 1997. Simulation results indicate that this approach works well for the level curves of Gaussian random fields under a variety of conditions. Additionally, this methodology does not depend on the location of estimated level curves, so confidence regions may appear in areas where an estimated level curve is not present. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/env.2295
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642332531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642332531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3695-6fdcb36bced5819c9cd8ee919bb389eb1c0382103c462ed5bfee6353a25255903</originalsourceid><addsrcrecordid>eNqN0E9LwzAYx_EgCs4p-BJy9NKZJ2nS5ihjbsKYQ_x3C2n6VKtdO5Nuundvx0TxIHh6focPz-FLyCmwATDGz7FeDzjXco_0gGkdMS0f97sNKYtixvQhOQrhhXVLyaRHkmFTF2WOtUPq8als6kCLxtP2GWmFa6yoW_k1BtoUNCxtW9qK5ra1x-SgsFXAk6_bJ3eXo9vhJJpej6-GF9PICaVlpIrcZUJlDnOZgnba5SmiBp1lItWYgWMi5cCEixXvTFYgKiGF5ZJLqZnok7Pd36Vv3lYYWrMog8OqsjU2q2BAxVwILgX8gwIoriToH-p8E4LHwix9ubB-Y4CZbUbTZTTbjB2NdvS9rHDzpzOj2f1vX4YWP7699a9GJSKR5mE2NjGfs5sZzI0Qn2x5gT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611626519</pqid></control><display><type>article</type><title>Confidence regions for the level curves of spatial data</title><source>Access via Wiley Online Library</source><creator>French, Joshua P.</creator><creatorcontrib>French, Joshua P.</creatorcontrib><description>Contour plots are often used by environmental scientists to display the distribution of a variable over a two‐dimensional region of interest, but the uncertainty associated with the estimated level curves seldom receives attention. Few methods are available for identifying the true level curve with quantifiable confidence, and typically, these methods only deal with the uncertainty at individual locations. Methodology is introduced for constructing a confidence region for the entire level curve of a Gaussian random field at a specified level. The methodology utilizes common geostatistical methods to produce confidence regions containing the entire level curve with high confidence. The validity of this approach is investigated using simulation studies involving several covariance functions, dependence levels, and response quantiles. This methodology is then applied in constructing a confidence region for a level curve of the total monthly precipitation for the state of Colorado in May 1997. Simulation results indicate that this approach works well for the level curves of Gaussian random fields under a variety of conditions. Additionally, this methodology does not depend on the location of estimated level curves, so confidence regions may appear in areas where an estimated level curve is not present. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1180-4009</identifier><identifier>EISSN: 1099-095X</identifier><identifier>DOI: 10.1002/env.2295</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Confidence ; confidence region ; contour lines ; Gaussian ; Geostatistics ; Methodology ; Precipitation ; Production methods ; Simulation ; simultaneous inference ; Uncertainty</subject><ispartof>Environmetrics (London, Ont.), 2014-11, Vol.25 (7), p.498-512</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3695-6fdcb36bced5819c9cd8ee919bb389eb1c0382103c462ed5bfee6353a25255903</citedby><cites>FETCH-LOGICAL-c3695-6fdcb36bced5819c9cd8ee919bb389eb1c0382103c462ed5bfee6353a25255903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fenv.2295$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fenv.2295$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>French, Joshua P.</creatorcontrib><title>Confidence regions for the level curves of spatial data</title><title>Environmetrics (London, Ont.)</title><addtitle>Environmetrics</addtitle><description>Contour plots are often used by environmental scientists to display the distribution of a variable over a two‐dimensional region of interest, but the uncertainty associated with the estimated level curves seldom receives attention. Few methods are available for identifying the true level curve with quantifiable confidence, and typically, these methods only deal with the uncertainty at individual locations. Methodology is introduced for constructing a confidence region for the entire level curve of a Gaussian random field at a specified level. The methodology utilizes common geostatistical methods to produce confidence regions containing the entire level curve with high confidence. The validity of this approach is investigated using simulation studies involving several covariance functions, dependence levels, and response quantiles. This methodology is then applied in constructing a confidence region for a level curve of the total monthly precipitation for the state of Colorado in May 1997. Simulation results indicate that this approach works well for the level curves of Gaussian random fields under a variety of conditions. Additionally, this methodology does not depend on the location of estimated level curves, so confidence regions may appear in areas where an estimated level curve is not present. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Confidence</subject><subject>confidence region</subject><subject>contour lines</subject><subject>Gaussian</subject><subject>Geostatistics</subject><subject>Methodology</subject><subject>Precipitation</subject><subject>Production methods</subject><subject>Simulation</subject><subject>simultaneous inference</subject><subject>Uncertainty</subject><issn>1180-4009</issn><issn>1099-095X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0E9LwzAYx_EgCs4p-BJy9NKZJ2nS5ihjbsKYQ_x3C2n6VKtdO5Nuundvx0TxIHh6focPz-FLyCmwATDGz7FeDzjXco_0gGkdMS0f97sNKYtixvQhOQrhhXVLyaRHkmFTF2WOtUPq8als6kCLxtP2GWmFa6yoW_k1BtoUNCxtW9qK5ra1x-SgsFXAk6_bJ3eXo9vhJJpej6-GF9PICaVlpIrcZUJlDnOZgnba5SmiBp1lItWYgWMi5cCEixXvTFYgKiGF5ZJLqZnok7Pd36Vv3lYYWrMog8OqsjU2q2BAxVwILgX8gwIoriToH-p8E4LHwix9ubB-Y4CZbUbTZTTbjB2NdvS9rHDzpzOj2f1vX4YWP7699a9GJSKR5mE2NjGfs5sZzI0Qn2x5gT0</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>French, Joshua P.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201411</creationdate><title>Confidence regions for the level curves of spatial data</title><author>French, Joshua P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3695-6fdcb36bced5819c9cd8ee919bb389eb1c0382103c462ed5bfee6353a25255903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Confidence</topic><topic>confidence region</topic><topic>contour lines</topic><topic>Gaussian</topic><topic>Geostatistics</topic><topic>Methodology</topic><topic>Precipitation</topic><topic>Production methods</topic><topic>Simulation</topic><topic>simultaneous inference</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>French, Joshua P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Environmetrics (London, Ont.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>French, Joshua P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence regions for the level curves of spatial data</atitle><jtitle>Environmetrics (London, Ont.)</jtitle><addtitle>Environmetrics</addtitle><date>2014-11</date><risdate>2014</risdate><volume>25</volume><issue>7</issue><spage>498</spage><epage>512</epage><pages>498-512</pages><issn>1180-4009</issn><eissn>1099-095X</eissn><abstract>Contour plots are often used by environmental scientists to display the distribution of a variable over a two‐dimensional region of interest, but the uncertainty associated with the estimated level curves seldom receives attention. Few methods are available for identifying the true level curve with quantifiable confidence, and typically, these methods only deal with the uncertainty at individual locations. Methodology is introduced for constructing a confidence region for the entire level curve of a Gaussian random field at a specified level. The methodology utilizes common geostatistical methods to produce confidence regions containing the entire level curve with high confidence. The validity of this approach is investigated using simulation studies involving several covariance functions, dependence levels, and response quantiles. This methodology is then applied in constructing a confidence region for a level curve of the total monthly precipitation for the state of Colorado in May 1997. Simulation results indicate that this approach works well for the level curves of Gaussian random fields under a variety of conditions. Additionally, this methodology does not depend on the location of estimated level curves, so confidence regions may appear in areas where an estimated level curve is not present. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/env.2295</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1180-4009
ispartof Environmetrics (London, Ont.), 2014-11, Vol.25 (7), p.498-512
issn 1180-4009
1099-095X
language eng
recordid cdi_proquest_miscellaneous_1642332531
source Access via Wiley Online Library
subjects Confidence
confidence region
contour lines
Gaussian
Geostatistics
Methodology
Precipitation
Production methods
Simulation
simultaneous inference
Uncertainty
title Confidence regions for the level curves of spatial data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20regions%20for%20the%20level%20curves%20of%20spatial%20data&rft.jtitle=Environmetrics%20(London,%20Ont.)&rft.au=French,%20Joshua%20P.&rft.date=2014-11&rft.volume=25&rft.issue=7&rft.spage=498&rft.epage=512&rft.pages=498-512&rft.issn=1180-4009&rft.eissn=1099-095X&rft_id=info:doi/10.1002/env.2295&rft_dat=%3Cproquest_cross%3E1642332531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1611626519&rft_id=info:pmid/&rfr_iscdi=true