Topographic control of stratified flows: upstream jets, blocking and isolating layers

Optimal solutions to the nonlinear, hydrostatic, Boussinesq equations are developed for steady, density-stratified, topographically controlled flows characterized by blocking and upstream influence. These flows are jet-like upstream of an isolated obstacle and are contained within an asymmetric, thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2014-08, Vol.753, p.80-103
Hauptverfasser: Winters, Kraig B., Armi, Laurence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue
container_start_page 80
container_title Journal of fluid mechanics
container_volume 753
creator Winters, Kraig B.
Armi, Laurence
description Optimal solutions to the nonlinear, hydrostatic, Boussinesq equations are developed for steady, density-stratified, topographically controlled flows characterized by blocking and upstream influence. These flows are jet-like upstream of an isolated obstacle and are contained within an asymmetric, thinning stream tube that is accelerated as it passes over the crest. A stagnant, nearly uniform-density isolating layer, surrounded by a bifurcated uppermost streamline, separates the accelerated flow from an uncoupled flow above. The flows are optimal in the sense that, for a given stratification, the solutions maximize the topographic rise above the blocking level required for hydraulic control while minimizing the total energy of the flow. Hydraulic control is defined mathematically by the asymmetry of the accelerated flow as it passes the crest. A subsequent analysis of the Taylor–Goldstein equation shows that these sheared, non-uniformly stratified flows are indeed subcritical upstream, critical at the crest, and supercritical downstream with respect to gravest-mode, long internal waves. The flows obtained are relevant to arrested wedge flows, selective withdrawal, stratified towing experiments, tidal flow over topography and atmospheric flows over mountains.
doi_str_mv 10.1017/jfm.2014.363
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642330716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_363</cupid><sourcerecordid>1642316866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-144f42477844b2a589e6e901119d136e0abc6f862b5cd644cacfd659a3f907513</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVoIG6SW36AoBR68DoarT5WuRXTJgVDLsl50WolV652tZXWhPz7ysSUEnrwSYx45p1hHoRugKyAgLzduWFFCbBVLeoztAAmVCUF4x_QghBKKwBKLtDHnHeEQE2UXKDnpzjFbdLTT2-wieOcYsDR4TwnPXvnbY9diC_5Du-n8mf1gHd2zkvchWh--XGL9dhjn2MoeKmCfrUpX6Fzp0O218f3Ej1___a0fqg2j_c_1l83lWGCzRUw5hhlUjaMdVTzRllhFQEA1UMtLNGdEa4RtOOmF4wZbVwvuNK1U0RyqC_Rl7fcKcXfe5vndvDZ2BD0aOM-tyAYrWsiQZyGgmjECSgXBKiSkp-AclUWZkQW9NM7dBf3aSznKRTjICXlh9nLN8qkmHOyrp2SH3R6bYG0B8ltkdweJLdFcsE_H0N1Njq4pEfj898e2ojivzkcanWM1UOXfL-1_0z_X_AfC-yzxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545177256</pqid></control><display><type>article</type><title>Topographic control of stratified flows: upstream jets, blocking and isolating layers</title><source>Cambridge University Press Journals Complete</source><creator>Winters, Kraig B. ; Armi, Laurence</creator><creatorcontrib>Winters, Kraig B. ; Armi, Laurence</creatorcontrib><description>Optimal solutions to the nonlinear, hydrostatic, Boussinesq equations are developed for steady, density-stratified, topographically controlled flows characterized by blocking and upstream influence. These flows are jet-like upstream of an isolated obstacle and are contained within an asymmetric, thinning stream tube that is accelerated as it passes over the crest. A stagnant, nearly uniform-density isolating layer, surrounded by a bifurcated uppermost streamline, separates the accelerated flow from an uncoupled flow above. The flows are optimal in the sense that, for a given stratification, the solutions maximize the topographic rise above the blocking level required for hydraulic control while minimizing the total energy of the flow. Hydraulic control is defined mathematically by the asymmetry of the accelerated flow as it passes the crest. A subsequent analysis of the Taylor–Goldstein equation shows that these sheared, non-uniformly stratified flows are indeed subcritical upstream, critical at the crest, and supercritical downstream with respect to gravest-mode, long internal waves. The flows obtained are relevant to arrested wedge flows, selective withdrawal, stratified towing experiments, tidal flow over topography and atmospheric flows over mountains.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.363</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accelerated flow ; Asymmetry ; Blocking ; Boussinesq equations ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid mechanics ; Geophysics. Techniques, methods, instrumentation and models ; Hydraulic control ; Hydraulics ; Internal waves ; Mathematical analysis ; Mountains ; Selective withdrawal ; Stratified flow ; Topography ; Upstream</subject><ispartof>Journal of fluid mechanics, 2014-08, Vol.753, p.80-103</ispartof><rights>2014 Cambridge University Press</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-144f42477844b2a589e6e901119d136e0abc6f862b5cd644cacfd659a3f907513</citedby><cites>FETCH-LOGICAL-c464t-144f42477844b2a589e6e901119d136e0abc6f862b5cd644cacfd659a3f907513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014003632/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28676481$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Winters, Kraig B.</creatorcontrib><creatorcontrib>Armi, Laurence</creatorcontrib><title>Topographic control of stratified flows: upstream jets, blocking and isolating layers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Optimal solutions to the nonlinear, hydrostatic, Boussinesq equations are developed for steady, density-stratified, topographically controlled flows characterized by blocking and upstream influence. These flows are jet-like upstream of an isolated obstacle and are contained within an asymmetric, thinning stream tube that is accelerated as it passes over the crest. A stagnant, nearly uniform-density isolating layer, surrounded by a bifurcated uppermost streamline, separates the accelerated flow from an uncoupled flow above. The flows are optimal in the sense that, for a given stratification, the solutions maximize the topographic rise above the blocking level required for hydraulic control while minimizing the total energy of the flow. Hydraulic control is defined mathematically by the asymmetry of the accelerated flow as it passes the crest. A subsequent analysis of the Taylor–Goldstein equation shows that these sheared, non-uniformly stratified flows are indeed subcritical upstream, critical at the crest, and supercritical downstream with respect to gravest-mode, long internal waves. The flows obtained are relevant to arrested wedge flows, selective withdrawal, stratified towing experiments, tidal flow over topography and atmospheric flows over mountains.</description><subject>Accelerated flow</subject><subject>Asymmetry</subject><subject>Blocking</subject><subject>Boussinesq equations</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid mechanics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Hydraulic control</subject><subject>Hydraulics</subject><subject>Internal waves</subject><subject>Mathematical analysis</subject><subject>Mountains</subject><subject>Selective withdrawal</subject><subject>Stratified flow</subject><subject>Topography</subject><subject>Upstream</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1rGzEQhkVoIG6SW36AoBR68DoarT5WuRXTJgVDLsl50WolV652tZXWhPz7ysSUEnrwSYx45p1hHoRugKyAgLzduWFFCbBVLeoztAAmVCUF4x_QghBKKwBKLtDHnHeEQE2UXKDnpzjFbdLTT2-wieOcYsDR4TwnPXvnbY9diC_5Du-n8mf1gHd2zkvchWh--XGL9dhjn2MoeKmCfrUpX6Fzp0O218f3Ej1___a0fqg2j_c_1l83lWGCzRUw5hhlUjaMdVTzRllhFQEA1UMtLNGdEa4RtOOmF4wZbVwvuNK1U0RyqC_Rl7fcKcXfe5vndvDZ2BD0aOM-tyAYrWsiQZyGgmjECSgXBKiSkp-AclUWZkQW9NM7dBf3aSznKRTjICXlh9nLN8qkmHOyrp2SH3R6bYG0B8ltkdweJLdFcsE_H0N1Njq4pEfj898e2ojivzkcanWM1UOXfL-1_0z_X_AfC-yzxA</recordid><startdate>20140825</startdate><enddate>20140825</enddate><creator>Winters, Kraig B.</creator><creator>Armi, Laurence</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7QH</scope></search><sort><creationdate>20140825</creationdate><title>Topographic control of stratified flows: upstream jets, blocking and isolating layers</title><author>Winters, Kraig B. ; Armi, Laurence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-144f42477844b2a589e6e901119d136e0abc6f862b5cd644cacfd659a3f907513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accelerated flow</topic><topic>Asymmetry</topic><topic>Blocking</topic><topic>Boussinesq equations</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid mechanics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Hydraulic control</topic><topic>Hydraulics</topic><topic>Internal waves</topic><topic>Mathematical analysis</topic><topic>Mountains</topic><topic>Selective withdrawal</topic><topic>Stratified flow</topic><topic>Topography</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winters, Kraig B.</creatorcontrib><creatorcontrib>Armi, Laurence</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Aqualine</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winters, Kraig B.</au><au>Armi, Laurence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topographic control of stratified flows: upstream jets, blocking and isolating layers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-08-25</date><risdate>2014</risdate><volume>753</volume><spage>80</spage><epage>103</epage><pages>80-103</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Optimal solutions to the nonlinear, hydrostatic, Boussinesq equations are developed for steady, density-stratified, topographically controlled flows characterized by blocking and upstream influence. These flows are jet-like upstream of an isolated obstacle and are contained within an asymmetric, thinning stream tube that is accelerated as it passes over the crest. A stagnant, nearly uniform-density isolating layer, surrounded by a bifurcated uppermost streamline, separates the accelerated flow from an uncoupled flow above. The flows are optimal in the sense that, for a given stratification, the solutions maximize the topographic rise above the blocking level required for hydraulic control while minimizing the total energy of the flow. Hydraulic control is defined mathematically by the asymmetry of the accelerated flow as it passes the crest. A subsequent analysis of the Taylor–Goldstein equation shows that these sheared, non-uniformly stratified flows are indeed subcritical upstream, critical at the crest, and supercritical downstream with respect to gravest-mode, long internal waves. The flows obtained are relevant to arrested wedge flows, selective withdrawal, stratified towing experiments, tidal flow over topography and atmospheric flows over mountains.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.363</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2014-08, Vol.753, p.80-103
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642330716
source Cambridge University Press Journals Complete
subjects Accelerated flow
Asymmetry
Blocking
Boussinesq equations
Earth, ocean, space
Exact sciences and technology
External geophysics
Fluid mechanics
Geophysics. Techniques, methods, instrumentation and models
Hydraulic control
Hydraulics
Internal waves
Mathematical analysis
Mountains
Selective withdrawal
Stratified flow
Topography
Upstream
title Topographic control of stratified flows: upstream jets, blocking and isolating layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topographic%20control%20of%20stratified%20flows:%20upstream%20jets,%20blocking%20and%20isolating%20layers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Winters,%20Kraig%20B.&rft.date=2014-08-25&rft.volume=753&rft.spage=80&rft.epage=103&rft.pages=80-103&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2014.363&rft_dat=%3Cproquest_cross%3E1642316866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545177256&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_363&rfr_iscdi=true