Gyrotactic bioconvection at pycnoclines
Bioconvection is an important phenomenon in aquatic environments, affecting the spatial distribution of motile micro-organisms and enhancing mixing within the fluid. However, stratification arising from thermal or solutal gradients can play a pivotal role in suppressing the bioconvective flows, lead...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2013-10, Vol.733, p.245-267 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | |
container_start_page | 245 |
container_title | Journal of fluid mechanics |
container_volume | 733 |
creator | Karimi, A. Ardekani, A. M. |
description | Bioconvection is an important phenomenon in aquatic environments, affecting the spatial distribution of motile micro-organisms and enhancing mixing within the fluid. However, stratification arising from thermal or solutal gradients can play a pivotal role in suppressing the bioconvective flows, leading to the aggregation of micro-organisms and growth of their patchiness. We investigate the combined effects by considering gyrotactic motility where the up-swimming cells are directed by the balance of the viscous and gravitational torques. To study this system, we employ a continuum model consisting of Navier–Stokes equations with the Boussinesq approximation coupled with two conservation equations for the concentration of cells and stratification agent. We present a linear stability analysis to determine the onset of bioconvection for different flow parameters. Also, using large-scale numerical simulations, we explore different regimes of the flow by varying the corresponding boundary conditions and dimensionless variables such as Rayleigh number and Lewis number (
$\mathit{Le}$
) and we show that the cell distribution can be characterized using the ratio of the buoyancy forces as the determinant parameter when
$\mathit{Le}\lt 1$
and the boundaries are insulated. But, in thermally stratified fluids corresponding to
$\mathit{Le}\gt 1$
, temperature gradients are demonstrated to have little impact on the bioconvective plumes provided that the walls are thermally insulated. In addition, we analyse the dynamical behaviour of the system in the case of persistent pycnoclines corresponding to constant salinity boundary conditions and we discuss the associated inhibition threshold of bioconvection in the light of the stability of linearized solutions. |
doi_str_mv | 10.1017/jfm.2013.415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642329613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2013_415</cupid><sourcerecordid>3092341101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-cdf1fb6cda139eff9ff119101ef20ae7ecdd6c7cc1863ffb0922781aa08a879e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9u_oCCiB7cdSa7m2yOUrQKBS96DulsIlu2m5pshf57U1pERPA0DDzzzMzL2AVCjoDybuGWOQcs8hKrAzbCUqhMirI6ZCMAzjNEDsfsJMYFJAqUHLHr6Sb4wdDQ0njeevL9p02N78dmGK821Hvq2t7GM3bkTBft-b6esrfHh9fJUzZ7mT5P7mcZFaoeMmocurmgxmChrHPKOUSVjrOOg7HSUtMIkkRYi8K5OSjOZY3GQG1qqWxxym523lXwH2sbB71sI9muM73166hRlLzgSmDxP1pVCFWtpEzo5S904dehT49oLEuAipcCEnW7oyj4GIN1ehXapQkbjaC3AesUsN4GrFPACb_aS00k07lgemrj9wyXCkAolbh8rzXLeWibd_tj-1_iL0GNiPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440052460</pqid></control><display><type>article</type><title>Gyrotactic bioconvection at pycnoclines</title><source>Cambridge University Press Journals Complete</source><creator>Karimi, A. ; Ardekani, A. M.</creator><creatorcontrib>Karimi, A. ; Ardekani, A. M.</creatorcontrib><description>Bioconvection is an important phenomenon in aquatic environments, affecting the spatial distribution of motile micro-organisms and enhancing mixing within the fluid. However, stratification arising from thermal or solutal gradients can play a pivotal role in suppressing the bioconvective flows, leading to the aggregation of micro-organisms and growth of their patchiness. We investigate the combined effects by considering gyrotactic motility where the up-swimming cells are directed by the balance of the viscous and gravitational torques. To study this system, we employ a continuum model consisting of Navier–Stokes equations with the Boussinesq approximation coupled with two conservation equations for the concentration of cells and stratification agent. We present a linear stability analysis to determine the onset of bioconvection for different flow parameters. Also, using large-scale numerical simulations, we explore different regimes of the flow by varying the corresponding boundary conditions and dimensionless variables such as Rayleigh number and Lewis number (
$\mathit{Le}$
) and we show that the cell distribution can be characterized using the ratio of the buoyancy forces as the determinant parameter when
$\mathit{Le}\lt 1$
and the boundaries are insulated. But, in thermally stratified fluids corresponding to
$\mathit{Le}\gt 1$
, temperature gradients are demonstrated to have little impact on the bioconvective plumes provided that the walls are thermally insulated. In addition, we analyse the dynamical behaviour of the system in the case of persistent pycnoclines corresponding to constant salinity boundary conditions and we discuss the associated inhibition threshold of bioconvection in the light of the stability of linearized solutions.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2013.415</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aquatic environment ; Biological and medical sciences ; Boundary conditions ; Buoyancy ; Cell physiology ; Computational fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Fundamental and applied biological sciences. Psychology ; Mathematical analysis ; Mathematical models ; Molecular and cellular biology ; Motility and taxis ; Navier-Stokes equations ; Numerical analysis ; Spatial distribution ; Stability analysis ; Stratification ; Swimming ; Temperature gradients</subject><ispartof>Journal of fluid mechanics, 2013-10, Vol.733, p.245-267</ispartof><rights>2013 Cambridge University Press</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-cdf1fb6cda139eff9ff119101ef20ae7ecdd6c7cc1863ffb0922781aa08a879e3</citedby><cites>FETCH-LOGICAL-c398t-cdf1fb6cda139eff9ff119101ef20ae7ecdd6c7cc1863ffb0922781aa08a879e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112013004151/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27900699$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Karimi, A.</creatorcontrib><creatorcontrib>Ardekani, A. M.</creatorcontrib><title>Gyrotactic bioconvection at pycnoclines</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Bioconvection is an important phenomenon in aquatic environments, affecting the spatial distribution of motile micro-organisms and enhancing mixing within the fluid. However, stratification arising from thermal or solutal gradients can play a pivotal role in suppressing the bioconvective flows, leading to the aggregation of micro-organisms and growth of their patchiness. We investigate the combined effects by considering gyrotactic motility where the up-swimming cells are directed by the balance of the viscous and gravitational torques. To study this system, we employ a continuum model consisting of Navier–Stokes equations with the Boussinesq approximation coupled with two conservation equations for the concentration of cells and stratification agent. We present a linear stability analysis to determine the onset of bioconvection for different flow parameters. Also, using large-scale numerical simulations, we explore different regimes of the flow by varying the corresponding boundary conditions and dimensionless variables such as Rayleigh number and Lewis number (
$\mathit{Le}$
) and we show that the cell distribution can be characterized using the ratio of the buoyancy forces as the determinant parameter when
$\mathit{Le}\lt 1$
and the boundaries are insulated. But, in thermally stratified fluids corresponding to
$\mathit{Le}\gt 1$
, temperature gradients are demonstrated to have little impact on the bioconvective plumes provided that the walls are thermally insulated. In addition, we analyse the dynamical behaviour of the system in the case of persistent pycnoclines corresponding to constant salinity boundary conditions and we discuss the associated inhibition threshold of bioconvection in the light of the stability of linearized solutions.</description><subject>Aquatic environment</subject><subject>Biological and medical sciences</subject><subject>Boundary conditions</subject><subject>Buoyancy</subject><subject>Cell physiology</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Molecular and cellular biology</subject><subject>Motility and taxis</subject><subject>Navier-Stokes equations</subject><subject>Numerical analysis</subject><subject>Spatial distribution</subject><subject>Stability analysis</subject><subject>Stratification</subject><subject>Swimming</subject><subject>Temperature gradients</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1LAzEQhoMoWD9u_oCCiB7cdSa7m2yOUrQKBS96DulsIlu2m5pshf57U1pERPA0DDzzzMzL2AVCjoDybuGWOQcs8hKrAzbCUqhMirI6ZCMAzjNEDsfsJMYFJAqUHLHr6Sb4wdDQ0njeevL9p02N78dmGK821Hvq2t7GM3bkTBft-b6esrfHh9fJUzZ7mT5P7mcZFaoeMmocurmgxmChrHPKOUSVjrOOg7HSUtMIkkRYi8K5OSjOZY3GQG1qqWxxym523lXwH2sbB71sI9muM73166hRlLzgSmDxP1pVCFWtpEzo5S904dehT49oLEuAipcCEnW7oyj4GIN1ehXapQkbjaC3AesUsN4GrFPACb_aS00k07lgemrj9wyXCkAolbh8rzXLeWibd_tj-1_iL0GNiPk</recordid><startdate>20131025</startdate><enddate>20131025</enddate><creator>Karimi, A.</creator><creator>Ardekani, A. M.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20131025</creationdate><title>Gyrotactic bioconvection at pycnoclines</title><author>Karimi, A. ; Ardekani, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-cdf1fb6cda139eff9ff119101ef20ae7ecdd6c7cc1863ffb0922781aa08a879e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aquatic environment</topic><topic>Biological and medical sciences</topic><topic>Boundary conditions</topic><topic>Buoyancy</topic><topic>Cell physiology</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Molecular and cellular biology</topic><topic>Motility and taxis</topic><topic>Navier-Stokes equations</topic><topic>Numerical analysis</topic><topic>Spatial distribution</topic><topic>Stability analysis</topic><topic>Stratification</topic><topic>Swimming</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimi, A.</creatorcontrib><creatorcontrib>Ardekani, A. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimi, A.</au><au>Ardekani, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gyrotactic bioconvection at pycnoclines</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2013-10-25</date><risdate>2013</risdate><volume>733</volume><spage>245</spage><epage>267</epage><pages>245-267</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Bioconvection is an important phenomenon in aquatic environments, affecting the spatial distribution of motile micro-organisms and enhancing mixing within the fluid. However, stratification arising from thermal or solutal gradients can play a pivotal role in suppressing the bioconvective flows, leading to the aggregation of micro-organisms and growth of their patchiness. We investigate the combined effects by considering gyrotactic motility where the up-swimming cells are directed by the balance of the viscous and gravitational torques. To study this system, we employ a continuum model consisting of Navier–Stokes equations with the Boussinesq approximation coupled with two conservation equations for the concentration of cells and stratification agent. We present a linear stability analysis to determine the onset of bioconvection for different flow parameters. Also, using large-scale numerical simulations, we explore different regimes of the flow by varying the corresponding boundary conditions and dimensionless variables such as Rayleigh number and Lewis number (
$\mathit{Le}$
) and we show that the cell distribution can be characterized using the ratio of the buoyancy forces as the determinant parameter when
$\mathit{Le}\lt 1$
and the boundaries are insulated. But, in thermally stratified fluids corresponding to
$\mathit{Le}\gt 1$
, temperature gradients are demonstrated to have little impact on the bioconvective plumes provided that the walls are thermally insulated. In addition, we analyse the dynamical behaviour of the system in the case of persistent pycnoclines corresponding to constant salinity boundary conditions and we discuss the associated inhibition threshold of bioconvection in the light of the stability of linearized solutions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2013.415</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2013-10, Vol.733, p.245-267 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642329613 |
source | Cambridge University Press Journals Complete |
subjects | Aquatic environment Biological and medical sciences Boundary conditions Buoyancy Cell physiology Computational fluid dynamics Fluid flow Fluid mechanics Fluids Fundamental and applied biological sciences. Psychology Mathematical analysis Mathematical models Molecular and cellular biology Motility and taxis Navier-Stokes equations Numerical analysis Spatial distribution Stability analysis Stratification Swimming Temperature gradients |
title | Gyrotactic bioconvection at pycnoclines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gyrotactic%20bioconvection%20at%20pycnoclines&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Karimi,%20A.&rft.date=2013-10-25&rft.volume=733&rft.spage=245&rft.epage=267&rft.pages=245-267&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2013.415&rft_dat=%3Cproquest_cross%3E3092341101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440052460&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2013_415&rfr_iscdi=true |