One-dimensional compression of bounded volumes of a self-gravitating gas

Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics 2012-05, Vol.47 (3), p.292-300
Hauptverfasser: Arafailov, S. I., Krasnobaev, K. V., Tagirova, R. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 3
container_start_page 292
container_title Fluid dynamics
container_volume 47
creator Arafailov, S. I.
Krasnobaev, K. V.
Tagirova, R. R.
description Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic regime in which gravitational equilibrium is attained and a fast compression regime with a many orders increase in the density. The quasiperiodic regime is realized when the layer thickness is fairly small as compared with the Jeans length. The fast compression occurs when the layer thickness is greater than the Jeans length.
doi_str_mv 10.1134/S0015462812030027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642329007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642329007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-6d3600defa48eed779f7c6b3117cf5482baec9b0b8b5286c5993cf0a9e8e7e603</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqXwAGwZWQJnO7HjEVVAkSp1AObIcc5RqiQuvqQSb0-jsiHBdLr7v_-Gj7FbDvecy-zhDYDnmRIFFyABhD5jC55rmRY56HO2mON0zi_ZFdEOAIxWYsHW2wHTuu1xoDYMtktc6PcRad6S4JMqTEONdXII3dQjzSebEHY-baI9tKMd26FJGkvX7MLbjvDmZy7Zx_PT-2qdbrYvr6vHTeokqDFVtVQANXqbFYi11sZrpyrJuXY-zwpRWXSmgqqoclEolxsjnQdrsECNCuSS3Z3-7mP4nJDGsm_JYdfZAcNEJVeZkMIA6P_RnB9RZfSM8hPqYiCK6Mt9bHsbv0oO5Sy4_CX42BGnDh3ZocFY7sIUjw7pj9I3DU18gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512326977</pqid></control><display><type>article</type><title>One-dimensional compression of bounded volumes of a self-gravitating gas</title><source>SpringerLink (Online service)</source><creator>Arafailov, S. I. ; Krasnobaev, K. V. ; Tagirova, R. R.</creator><creatorcontrib>Arafailov, S. I. ; Krasnobaev, K. V. ; Tagirova, R. R.</creatorcontrib><description>Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic regime in which gravitational equilibrium is attained and a fast compression regime with a many orders increase in the density. The quasiperiodic regime is realized when the layer thickness is fairly small as compared with the Jeans length. The fast compression occurs when the layer thickness is greater than the Jeans length.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462812030027</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Compressing ; Computational fluid dynamics ; Density ; Engineering Fluid Dynamics ; Fluid- and Aerodynamics ; Gas flow ; Mathematical analysis ; Physics ; Physics and Astronomy ; Planes ; Unsteady</subject><ispartof>Fluid dynamics, 2012-05, Vol.47 (3), p.292-300</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-6d3600defa48eed779f7c6b3117cf5482baec9b0b8b5286c5993cf0a9e8e7e603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462812030027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462812030027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Arafailov, S. I.</creatorcontrib><creatorcontrib>Krasnobaev, K. V.</creatorcontrib><creatorcontrib>Tagirova, R. R.</creatorcontrib><title>One-dimensional compression of bounded volumes of a self-gravitating gas</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic regime in which gravitational equilibrium is attained and a fast compression regime with a many orders increase in the density. The quasiperiodic regime is realized when the layer thickness is fairly small as compared with the Jeans length. The fast compression occurs when the layer thickness is greater than the Jeans length.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Compressing</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Gas flow</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planes</subject><subject>Unsteady</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqXwAGwZWQJnO7HjEVVAkSp1AObIcc5RqiQuvqQSb0-jsiHBdLr7v_-Gj7FbDvecy-zhDYDnmRIFFyABhD5jC55rmRY56HO2mON0zi_ZFdEOAIxWYsHW2wHTuu1xoDYMtktc6PcRad6S4JMqTEONdXII3dQjzSebEHY-baI9tKMd26FJGkvX7MLbjvDmZy7Zx_PT-2qdbrYvr6vHTeokqDFVtVQANXqbFYi11sZrpyrJuXY-zwpRWXSmgqqoclEolxsjnQdrsECNCuSS3Z3-7mP4nJDGsm_JYdfZAcNEJVeZkMIA6P_RnB9RZfSM8hPqYiCK6Mt9bHsbv0oO5Sy4_CX42BGnDh3ZocFY7sIUjw7pj9I3DU18gQ</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Arafailov, S. I.</creator><creator>Krasnobaev, K. V.</creator><creator>Tagirova, R. R.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120501</creationdate><title>One-dimensional compression of bounded volumes of a self-gravitating gas</title><author>Arafailov, S. I. ; Krasnobaev, K. V. ; Tagirova, R. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-6d3600defa48eed779f7c6b3117cf5482baec9b0b8b5286c5993cf0a9e8e7e603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Compressing</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Gas flow</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planes</topic><topic>Unsteady</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arafailov, S. I.</creatorcontrib><creatorcontrib>Krasnobaev, K. V.</creatorcontrib><creatorcontrib>Tagirova, R. R.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arafailov, S. I.</au><au>Krasnobaev, K. V.</au><au>Tagirova, R. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional compression of bounded volumes of a self-gravitating gas</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>47</volume><issue>3</issue><spage>292</spage><epage>300</epage><pages>292-300</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic regime in which gravitational equilibrium is attained and a fast compression regime with a many orders increase in the density. The quasiperiodic regime is realized when the layer thickness is fairly small as compared with the Jeans length. The fast compression occurs when the layer thickness is greater than the Jeans length.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0015462812030027</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-4628
ispartof Fluid dynamics, 2012-05, Vol.47 (3), p.292-300
issn 0015-4628
1573-8507
language eng
recordid cdi_proquest_miscellaneous_1642329007
source SpringerLink (Online service)
subjects Classical and Continuum Physics
Classical Mechanics
Compressing
Computational fluid dynamics
Density
Engineering Fluid Dynamics
Fluid- and Aerodynamics
Gas flow
Mathematical analysis
Physics
Physics and Astronomy
Planes
Unsteady
title One-dimensional compression of bounded volumes of a self-gravitating gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20compression%20of%20bounded%20volumes%20of%20a%20self-gravitating%20gas&rft.jtitle=Fluid%20dynamics&rft.au=Arafailov,%20S.%20I.&rft.date=2012-05-01&rft.volume=47&rft.issue=3&rft.spage=292&rft.epage=300&rft.pages=292-300&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462812030027&rft_dat=%3Cproquest_cross%3E1642329007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512326977&rft_id=info:pmid/&rfr_iscdi=true