One-dimensional compression of bounded volumes of a self-gravitating gas
Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic...
Gespeichert in:
Veröffentlicht in: | Fluid dynamics 2012-05, Vol.47 (3), p.292-300 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 300 |
---|---|
container_issue | 3 |
container_start_page | 292 |
container_title | Fluid dynamics |
container_volume | 47 |
creator | Arafailov, S. I. Krasnobaev, K. V. Tagirova, R. R. |
description | Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic regime in which gravitational equilibrium is attained and a fast compression regime with a many orders increase in the density. The quasiperiodic regime is realized when the layer thickness is fairly small as compared with the Jeans length. The fast compression occurs when the layer thickness is greater than the Jeans length. |
doi_str_mv | 10.1134/S0015462812030027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642329007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642329007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-6d3600defa48eed779f7c6b3117cf5482baec9b0b8b5286c5993cf0a9e8e7e603</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqXwAGwZWQJnO7HjEVVAkSp1AObIcc5RqiQuvqQSb0-jsiHBdLr7v_-Gj7FbDvecy-zhDYDnmRIFFyABhD5jC55rmRY56HO2mON0zi_ZFdEOAIxWYsHW2wHTuu1xoDYMtktc6PcRad6S4JMqTEONdXII3dQjzSebEHY-baI9tKMd26FJGkvX7MLbjvDmZy7Zx_PT-2qdbrYvr6vHTeokqDFVtVQANXqbFYi11sZrpyrJuXY-zwpRWXSmgqqoclEolxsjnQdrsECNCuSS3Z3-7mP4nJDGsm_JYdfZAcNEJVeZkMIA6P_RnB9RZfSM8hPqYiCK6Mt9bHsbv0oO5Sy4_CX42BGnDh3ZocFY7sIUjw7pj9I3DU18gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512326977</pqid></control><display><type>article</type><title>One-dimensional compression of bounded volumes of a self-gravitating gas</title><source>SpringerLink (Online service)</source><creator>Arafailov, S. I. ; Krasnobaev, K. V. ; Tagirova, R. R.</creator><creatorcontrib>Arafailov, S. I. ; Krasnobaev, K. V. ; Tagirova, R. R.</creatorcontrib><description>Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic regime in which gravitational equilibrium is attained and a fast compression regime with a many orders increase in the density. The quasiperiodic regime is realized when the layer thickness is fairly small as compared with the Jeans length. The fast compression occurs when the layer thickness is greater than the Jeans length.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462812030027</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Compressing ; Computational fluid dynamics ; Density ; Engineering Fluid Dynamics ; Fluid- and Aerodynamics ; Gas flow ; Mathematical analysis ; Physics ; Physics and Astronomy ; Planes ; Unsteady</subject><ispartof>Fluid dynamics, 2012-05, Vol.47 (3), p.292-300</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-6d3600defa48eed779f7c6b3117cf5482baec9b0b8b5286c5993cf0a9e8e7e603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462812030027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462812030027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Arafailov, S. I.</creatorcontrib><creatorcontrib>Krasnobaev, K. V.</creatorcontrib><creatorcontrib>Tagirova, R. R.</creatorcontrib><title>One-dimensional compression of bounded volumes of a self-gravitating gas</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic regime in which gravitational equilibrium is attained and a fast compression regime with a many orders increase in the density. The quasiperiodic regime is realized when the layer thickness is fairly small as compared with the Jeans length. The fast compression occurs when the layer thickness is greater than the Jeans length.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Compressing</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Gas flow</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planes</subject><subject>Unsteady</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqXwAGwZWQJnO7HjEVVAkSp1AObIcc5RqiQuvqQSb0-jsiHBdLr7v_-Gj7FbDvecy-zhDYDnmRIFFyABhD5jC55rmRY56HO2mON0zi_ZFdEOAIxWYsHW2wHTuu1xoDYMtktc6PcRad6S4JMqTEONdXII3dQjzSebEHY-baI9tKMd26FJGkvX7MLbjvDmZy7Zx_PT-2qdbrYvr6vHTeokqDFVtVQANXqbFYi11sZrpyrJuXY-zwpRWXSmgqqoclEolxsjnQdrsECNCuSS3Z3-7mP4nJDGsm_JYdfZAcNEJVeZkMIA6P_RnB9RZfSM8hPqYiCK6Mt9bHsbv0oO5Sy4_CX42BGnDh3ZocFY7sIUjw7pj9I3DU18gQ</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Arafailov, S. I.</creator><creator>Krasnobaev, K. V.</creator><creator>Tagirova, R. R.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120501</creationdate><title>One-dimensional compression of bounded volumes of a self-gravitating gas</title><author>Arafailov, S. I. ; Krasnobaev, K. V. ; Tagirova, R. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-6d3600defa48eed779f7c6b3117cf5482baec9b0b8b5286c5993cf0a9e8e7e603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Compressing</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Gas flow</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planes</topic><topic>Unsteady</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arafailov, S. I.</creatorcontrib><creatorcontrib>Krasnobaev, K. V.</creatorcontrib><creatorcontrib>Tagirova, R. R.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arafailov, S. I.</au><au>Krasnobaev, K. V.</au><au>Tagirova, R. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional compression of bounded volumes of a self-gravitating gas</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>47</volume><issue>3</issue><spage>292</spage><epage>300</epage><pages>292-300</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic regime in which gravitational equilibrium is attained and a fast compression regime with a many orders increase in the density. The quasiperiodic regime is realized when the layer thickness is fairly small as compared with the Jeans length. The fast compression occurs when the layer thickness is greater than the Jeans length.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0015462812030027</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-4628 |
ispartof | Fluid dynamics, 2012-05, Vol.47 (3), p.292-300 |
issn | 0015-4628 1573-8507 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642329007 |
source | SpringerLink (Online service) |
subjects | Classical and Continuum Physics Classical Mechanics Compressing Computational fluid dynamics Density Engineering Fluid Dynamics Fluid- and Aerodynamics Gas flow Mathematical analysis Physics Physics and Astronomy Planes Unsteady |
title | One-dimensional compression of bounded volumes of a self-gravitating gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20compression%20of%20bounded%20volumes%20of%20a%20self-gravitating%20gas&rft.jtitle=Fluid%20dynamics&rft.au=Arafailov,%20S.%20I.&rft.date=2012-05-01&rft.volume=47&rft.issue=3&rft.spage=292&rft.epage=300&rft.pages=292-300&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462812030027&rft_dat=%3Cproquest_cross%3E1642329007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512326977&rft_id=info:pmid/&rfr_iscdi=true |