A Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers
Quasi-operational shipborne radiometers provide a fiducial reference measurement (FRM) for satellite validation of satellite sea surface skin temperature (SSTskin) retrievals. External reference blackbodies are required to verify the performance and to quantify the accuracy of the radiometer calibra...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2014-05, Vol.31 (5), p.1104-1127 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1127 |
---|---|
container_issue | 5 |
container_start_page | 1104 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 31 |
creator | Donlon, Craig J Wimmer, W Robinson, I Fisher, G Ferlet, M Nightingale, T Bras, B |
description | Quasi-operational shipborne radiometers provide a fiducial reference measurement (FRM) for satellite validation of satellite sea surface skin temperature (SSTskin) retrievals. External reference blackbodies are required to verify the performance and to quantify the accuracy of the radiometer calibration system. They provide a link in an unbroken chain of comparisons between the shipborne radiometer and a traceable reference standard. A second-generation water bath blackbody reference radiance source has been developed for this purpose. The second generation Concerted Action for the Study of the Ocean Thermal Skin (CASOTS-II) blackbody has a 110-mm-diameter aperture cylinder-cone geometry coated with NEXTEL suede 3103 paint. Interchangeable aperture stops reduce the cavity aperture diameter and minimize stray radiation. Monte Carlo modeling techniques show the effective emissivity of the cavity to be >0.9999 (aperture < 30 mm). The cavity is immersed in a water bath that is vigorously stirred using a pump that slowly heats the water bath at a mean rate of 0.6 K h1. The temperature of the water bath is measured using a thermometer traceable to the International System of Units (SI) standards. The worst-case radiance temperature of the CASOTS-II blackbody system is traceable to the SI with an uncertainty of 58 mK (millikelvin). When operating under typical laboratory conditions using an aperture of 40 mm, the uncertainty is 16 mK. An intercomparison with the U.K. National Physical Laboratory Absolute Measurements of Blackbody Emitted Radiance (AMBER) reference radiometer found no significant differences within 75 mK (110-mm aperture) or 50 mK (40-mm aperture), which is the combined uncertainty of the comparison and the reference standard for SI traceability of ISAR radiometer SSTskin records used for satellite SST validation. Applications of the CASOTS-II blackbody to monitor the calibration of shipborne radiometers are described and measurement protocols are proposed. |
doi_str_mv | 10.1175/JTECH-D-13-00151.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642328969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642328969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-be23c6677b86ab4aeb7bbc8feb87b3f50754144922fe59a9f165b5fd73bef03f3</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EEqXwB5gssbAE_G1nhPKtSkh8rZadnEtKGhc7HfrvCS0TAyx3p9OjV3d6EDqm5IxSLc8fXq4nd8VVQXlBCJX0jO6gEZWMFEQwtYtGRPOyIFKzfXSQ85wMFKdqhOYX-Bmq2NXFLXSQXN_EDl-2rvrwsV7j53XuYYFDTLh_BzxxbeN_INfV-A1SE5pqu4hhiHKz2HQzfN-F5BLU-MnVTVxADykfor3g2gxHP32MXm-uX4azp4-395OLaVEJxfrCA-OVUlp7o5wXDrz2vjIBvNGeB0m0FFSIkrEAsnRloEp6GWrNPQTCAx-j023uMsXPFeTeLppcQdu6DuIqW6oE48yUqvwflVwYURrDB_TkFzqPq9QNj1hmmGKcaCH_ogYbhitZDnWM2JaqUsw5QbDL1CxcWltK7LdPu_FpryzlduNzGL4AdAWS0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528365928</pqid></control><display><type>article</type><title>A Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Donlon, Craig J ; Wimmer, W ; Robinson, I ; Fisher, G ; Ferlet, M ; Nightingale, T ; Bras, B</creator><creatorcontrib>Donlon, Craig J ; Wimmer, W ; Robinson, I ; Fisher, G ; Ferlet, M ; Nightingale, T ; Bras, B</creatorcontrib><description>Quasi-operational shipborne radiometers provide a fiducial reference measurement (FRM) for satellite validation of satellite sea surface skin temperature (SSTskin) retrievals. External reference blackbodies are required to verify the performance and to quantify the accuracy of the radiometer calibration system. They provide a link in an unbroken chain of comparisons between the shipborne radiometer and a traceable reference standard. A second-generation water bath blackbody reference radiance source has been developed for this purpose. The second generation Concerted Action for the Study of the Ocean Thermal Skin (CASOTS-II) blackbody has a 110-mm-diameter aperture cylinder-cone geometry coated with NEXTEL suede 3103 paint. Interchangeable aperture stops reduce the cavity aperture diameter and minimize stray radiation. Monte Carlo modeling techniques show the effective emissivity of the cavity to be >0.9999 (aperture < 30 mm). The cavity is immersed in a water bath that is vigorously stirred using a pump that slowly heats the water bath at a mean rate of 0.6 K h1. The temperature of the water bath is measured using a thermometer traceable to the International System of Units (SI) standards. The worst-case radiance temperature of the CASOTS-II blackbody system is traceable to the SI with an uncertainty of 58 mK (millikelvin). When operating under typical laboratory conditions using an aperture of 40 mm, the uncertainty is 16 mK. An intercomparison with the U.K. National Physical Laboratory Absolute Measurements of Blackbody Emitted Radiance (AMBER) reference radiometer found no significant differences within 75 mK (110-mm aperture) or 50 mK (40-mm aperture), which is the combined uncertainty of the comparison and the reference standard for SI traceability of ISAR radiometer SSTskin records used for satellite SST validation. Applications of the CASOTS-II blackbody to monitor the calibration of shipborne radiometers are described and measurement protocols are proposed.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-13-00151.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Apertures ; Blackbody ; Calibration ; Climate change ; Cylinders ; Datasets ; Diameters ; Emissivity ; Estimates ; Infrared radiometers ; Intercomparison ; International System of Units ; Laboratories ; Marine ; Measurement ; Microwave imagery ; Radiance ; Radiation ; Radiometers ; Resistance thermometers ; Satellites ; Sea surface ; Sea surface temperature ; Skin ; Skin temperature ; Statistical methods ; Studies ; Temperature ; Temperature requirements ; Thermometers ; Uncertainty ; Water baths</subject><ispartof>Journal of atmospheric and oceanic technology, 2014-05, Vol.31 (5), p.1104-1127</ispartof><rights>Copyright American Meteorological Society May 2014</rights><rights>Copyright American Meteorological Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-be23c6677b86ab4aeb7bbc8feb87b3f50754144922fe59a9f165b5fd73bef03f3</citedby><cites>FETCH-LOGICAL-c462t-be23c6677b86ab4aeb7bbc8feb87b3f50754144922fe59a9f165b5fd73bef03f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Donlon, Craig J</creatorcontrib><creatorcontrib>Wimmer, W</creatorcontrib><creatorcontrib>Robinson, I</creatorcontrib><creatorcontrib>Fisher, G</creatorcontrib><creatorcontrib>Ferlet, M</creatorcontrib><creatorcontrib>Nightingale, T</creatorcontrib><creatorcontrib>Bras, B</creatorcontrib><title>A Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers</title><title>Journal of atmospheric and oceanic technology</title><description>Quasi-operational shipborne radiometers provide a fiducial reference measurement (FRM) for satellite validation of satellite sea surface skin temperature (SSTskin) retrievals. External reference blackbodies are required to verify the performance and to quantify the accuracy of the radiometer calibration system. They provide a link in an unbroken chain of comparisons between the shipborne radiometer and a traceable reference standard. A second-generation water bath blackbody reference radiance source has been developed for this purpose. The second generation Concerted Action for the Study of the Ocean Thermal Skin (CASOTS-II) blackbody has a 110-mm-diameter aperture cylinder-cone geometry coated with NEXTEL suede 3103 paint. Interchangeable aperture stops reduce the cavity aperture diameter and minimize stray radiation. Monte Carlo modeling techniques show the effective emissivity of the cavity to be >0.9999 (aperture < 30 mm). The cavity is immersed in a water bath that is vigorously stirred using a pump that slowly heats the water bath at a mean rate of 0.6 K h1. The temperature of the water bath is measured using a thermometer traceable to the International System of Units (SI) standards. The worst-case radiance temperature of the CASOTS-II blackbody system is traceable to the SI with an uncertainty of 58 mK (millikelvin). When operating under typical laboratory conditions using an aperture of 40 mm, the uncertainty is 16 mK. An intercomparison with the U.K. National Physical Laboratory Absolute Measurements of Blackbody Emitted Radiance (AMBER) reference radiometer found no significant differences within 75 mK (110-mm aperture) or 50 mK (40-mm aperture), which is the combined uncertainty of the comparison and the reference standard for SI traceability of ISAR radiometer SSTskin records used for satellite SST validation. Applications of the CASOTS-II blackbody to monitor the calibration of shipborne radiometers are described and measurement protocols are proposed.</description><subject>Apertures</subject><subject>Blackbody</subject><subject>Calibration</subject><subject>Climate change</subject><subject>Cylinders</subject><subject>Datasets</subject><subject>Diameters</subject><subject>Emissivity</subject><subject>Estimates</subject><subject>Infrared radiometers</subject><subject>Intercomparison</subject><subject>International System of Units</subject><subject>Laboratories</subject><subject>Marine</subject><subject>Measurement</subject><subject>Microwave imagery</subject><subject>Radiance</subject><subject>Radiation</subject><subject>Radiometers</subject><subject>Resistance thermometers</subject><subject>Satellites</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Skin</subject><subject>Skin temperature</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Temperature</subject><subject>Temperature requirements</subject><subject>Thermometers</subject><subject>Uncertainty</subject><subject>Water baths</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkT1PwzAQhi0EEqXwB5gssbAE_G1nhPKtSkh8rZadnEtKGhc7HfrvCS0TAyx3p9OjV3d6EDqm5IxSLc8fXq4nd8VVQXlBCJX0jO6gEZWMFEQwtYtGRPOyIFKzfXSQ85wMFKdqhOYX-Bmq2NXFLXSQXN_EDl-2rvrwsV7j53XuYYFDTLh_BzxxbeN_INfV-A1SE5pqu4hhiHKz2HQzfN-F5BLU-MnVTVxADykfor3g2gxHP32MXm-uX4azp4-395OLaVEJxfrCA-OVUlp7o5wXDrz2vjIBvNGeB0m0FFSIkrEAsnRloEp6GWrNPQTCAx-j023uMsXPFeTeLppcQdu6DuIqW6oE48yUqvwflVwYURrDB_TkFzqPq9QNj1hmmGKcaCH_ogYbhitZDnWM2JaqUsw5QbDL1CxcWltK7LdPu_FpryzlduNzGL4AdAWS0g</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Donlon, Craig J</creator><creator>Wimmer, W</creator><creator>Robinson, I</creator><creator>Fisher, G</creator><creator>Ferlet, M</creator><creator>Nightingale, T</creator><creator>Bras, B</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20140501</creationdate><title>A Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers</title><author>Donlon, Craig J ; Wimmer, W ; Robinson, I ; Fisher, G ; Ferlet, M ; Nightingale, T ; Bras, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-be23c6677b86ab4aeb7bbc8feb87b3f50754144922fe59a9f165b5fd73bef03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Apertures</topic><topic>Blackbody</topic><topic>Calibration</topic><topic>Climate change</topic><topic>Cylinders</topic><topic>Datasets</topic><topic>Diameters</topic><topic>Emissivity</topic><topic>Estimates</topic><topic>Infrared radiometers</topic><topic>Intercomparison</topic><topic>International System of Units</topic><topic>Laboratories</topic><topic>Marine</topic><topic>Measurement</topic><topic>Microwave imagery</topic><topic>Radiance</topic><topic>Radiation</topic><topic>Radiometers</topic><topic>Resistance thermometers</topic><topic>Satellites</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Skin</topic><topic>Skin temperature</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Temperature</topic><topic>Temperature requirements</topic><topic>Thermometers</topic><topic>Uncertainty</topic><topic>Water baths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donlon, Craig J</creatorcontrib><creatorcontrib>Wimmer, W</creatorcontrib><creatorcontrib>Robinson, I</creatorcontrib><creatorcontrib>Fisher, G</creatorcontrib><creatorcontrib>Ferlet, M</creatorcontrib><creatorcontrib>Nightingale, T</creatorcontrib><creatorcontrib>Bras, B</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donlon, Craig J</au><au>Wimmer, W</au><au>Robinson, I</au><au>Fisher, G</au><au>Ferlet, M</au><au>Nightingale, T</au><au>Bras, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>31</volume><issue>5</issue><spage>1104</spage><epage>1127</epage><pages>1104-1127</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Quasi-operational shipborne radiometers provide a fiducial reference measurement (FRM) for satellite validation of satellite sea surface skin temperature (SSTskin) retrievals. External reference blackbodies are required to verify the performance and to quantify the accuracy of the radiometer calibration system. They provide a link in an unbroken chain of comparisons between the shipborne radiometer and a traceable reference standard. A second-generation water bath blackbody reference radiance source has been developed for this purpose. The second generation Concerted Action for the Study of the Ocean Thermal Skin (CASOTS-II) blackbody has a 110-mm-diameter aperture cylinder-cone geometry coated with NEXTEL suede 3103 paint. Interchangeable aperture stops reduce the cavity aperture diameter and minimize stray radiation. Monte Carlo modeling techniques show the effective emissivity of the cavity to be >0.9999 (aperture < 30 mm). The cavity is immersed in a water bath that is vigorously stirred using a pump that slowly heats the water bath at a mean rate of 0.6 K h1. The temperature of the water bath is measured using a thermometer traceable to the International System of Units (SI) standards. The worst-case radiance temperature of the CASOTS-II blackbody system is traceable to the SI with an uncertainty of 58 mK (millikelvin). When operating under typical laboratory conditions using an aperture of 40 mm, the uncertainty is 16 mK. An intercomparison with the U.K. National Physical Laboratory Absolute Measurements of Blackbody Emitted Radiance (AMBER) reference radiometer found no significant differences within 75 mK (110-mm aperture) or 50 mK (40-mm aperture), which is the combined uncertainty of the comparison and the reference standard for SI traceability of ISAR radiometer SSTskin records used for satellite SST validation. Applications of the CASOTS-II blackbody to monitor the calibration of shipborne radiometers are described and measurement protocols are proposed.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-13-00151.1</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2014-05, Vol.31 (5), p.1104-1127 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642328969 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Apertures Blackbody Calibration Climate change Cylinders Datasets Diameters Emissivity Estimates Infrared radiometers Intercomparison International System of Units Laboratories Marine Measurement Microwave imagery Radiance Radiation Radiometers Resistance thermometers Satellites Sea surface Sea surface temperature Skin Skin temperature Statistical methods Studies Temperature Temperature requirements Thermometers Uncertainty Water baths |
title | A Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Second-Generation%20Blackbody%20System%20for%20the%20Calibration%20and%20Verification%20of%20Seagoing%20Infrared%20Radiometers&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Donlon,%20Craig%20J&rft.date=2014-05-01&rft.volume=31&rft.issue=5&rft.spage=1104&rft.epage=1127&rft.pages=1104-1127&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-13-00151.1&rft_dat=%3Cproquest_cross%3E1642328969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528365928&rft_id=info:pmid/&rfr_iscdi=true |