Edge states for the turbulence transition in the asymptotic suction boundary layer
We demonstrate the existence of an exact invariant solution to the Navier–Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability bound...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2013-07, Vol.726, p.100-122 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | |
container_start_page | 100 |
container_title | Journal of fluid mechanics |
container_volume | 726 |
creator | Kreilos, Tobias Veble, Gregor Schneider, Tobias M. Eckhardt, Bruno |
description | We demonstrate the existence of an exact invariant solution to the Navier–Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability boundary between laminar and turbulent dynamics. Its dynamics captures both the interplay of downstream-oriented vortex pairs and streaks observed in numerous shear flows as well as the energetic bursting that is characteristic for boundary layers. By embedding the flow into a family of flows that interpolates between plane Couette flow and the boundary layer, we demonstrate that the periodic orbit emerges in a saddle–node infinite-period (SNIPER) bifurcation of two symmetry-related travelling-wave solutions of plane Couette flow. Physically, the long period is due to a slow streak instability, which leads to a violent breakup of a streak associated with the bursting and the reformation of the streak at a different spanwise location. We show that the orbit is structurally stable when varying both the Reynolds number and the domain size. |
doi_str_mv | 10.1017/jfm.2013.212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642328688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2013_212</cupid><sourcerecordid>2983451951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-ae4cc7f2d70b0e03ec57fbb72f682b7a00775ad09c06307346eca9d6675b3f963</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouK7e_AEFETzYdZImmfYosn7AgiB6LmmaaJd-rEl62H9v9gMRETxlYJ55w8xDyDmFGQWKN0vbzRjQbMYoOyATymWRouTikEwAGEspZXBMTrxfQqSgwAl5mdfvJvFBBeMTO7gkfJgkjK4aW9PrWDrV-yY0Q580_bap_LpbhSE0OvGj3naqYexr5dZJq9bGnZIjq1pvzvbvlLzdz1_vHtPF88PT3e0i1QJYSJXhWqNlNUIFBjKjBdqqQmZlzipUAIhC1VBokBlgxqXRqqilRFFltpDZlFztcldu-ByND2XXeG3aVvVmGH1JJWcZy2We_49myEAgLVhEL36hy2F0fVwkUkJKjpTzSF3vKO0G752x5co1XTxBSaHcuCiji3LjoowuIn65D1Veq9bGo-rGf88wFBR5LiI328eqrnJNVPPj97-CvwCOwJfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356647144</pqid></control><display><type>article</type><title>Edge states for the turbulence transition in the asymptotic suction boundary layer</title><source>Cambridge Journals</source><creator>Kreilos, Tobias ; Veble, Gregor ; Schneider, Tobias M. ; Eckhardt, Bruno</creator><creatorcontrib>Kreilos, Tobias ; Veble, Gregor ; Schneider, Tobias M. ; Eckhardt, Bruno</creatorcontrib><description>We demonstrate the existence of an exact invariant solution to the Navier–Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability boundary between laminar and turbulent dynamics. Its dynamics captures both the interplay of downstream-oriented vortex pairs and streaks observed in numerous shear flows as well as the energetic bursting that is characteristic for boundary layers. By embedding the flow into a family of flows that interpolates between plane Couette flow and the boundary layer, we demonstrate that the periodic orbit emerges in a saddle–node infinite-period (SNIPER) bifurcation of two symmetry-related travelling-wave solutions of plane Couette flow. Physically, the long period is due to a slow streak instability, which leads to a violent breakup of a streak associated with the bursting and the reformation of the streak at a different spanwise location. We show that the orbit is structurally stable when varying both the Reynolds number and the domain size.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2013.212</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic properties ; Boundary layer ; Boundary layers ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Navier-Stokes equations ; Physics ; Streak ; Transition to turbulence ; Turbulence ; Turbulent flow ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2013-07, Vol.726, p.100-122</ispartof><rights>2013 Cambridge University Press</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-ae4cc7f2d70b0e03ec57fbb72f682b7a00775ad09c06307346eca9d6675b3f963</citedby><cites>FETCH-LOGICAL-c502t-ae4cc7f2d70b0e03ec57fbb72f682b7a00775ad09c06307346eca9d6675b3f963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112013002127/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27517485$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreilos, Tobias</creatorcontrib><creatorcontrib>Veble, Gregor</creatorcontrib><creatorcontrib>Schneider, Tobias M.</creatorcontrib><creatorcontrib>Eckhardt, Bruno</creatorcontrib><title>Edge states for the turbulence transition in the asymptotic suction boundary layer</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We demonstrate the existence of an exact invariant solution to the Navier–Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability boundary between laminar and turbulent dynamics. Its dynamics captures both the interplay of downstream-oriented vortex pairs and streaks observed in numerous shear flows as well as the energetic bursting that is characteristic for boundary layers. By embedding the flow into a family of flows that interpolates between plane Couette flow and the boundary layer, we demonstrate that the periodic orbit emerges in a saddle–node infinite-period (SNIPER) bifurcation of two symmetry-related travelling-wave solutions of plane Couette flow. Physically, the long period is due to a slow streak instability, which leads to a violent breakup of a streak associated with the bursting and the reformation of the streak at a different spanwise location. We show that the orbit is structurally stable when varying both the Reynolds number and the domain size.</description><subject>Asymptotic properties</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Streak</subject><subject>Transition to turbulence</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1LxDAQhoMouK7e_AEFETzYdZImmfYosn7AgiB6LmmaaJd-rEl62H9v9gMRETxlYJ55w8xDyDmFGQWKN0vbzRjQbMYoOyATymWRouTikEwAGEspZXBMTrxfQqSgwAl5mdfvJvFBBeMTO7gkfJgkjK4aW9PrWDrV-yY0Q580_bap_LpbhSE0OvGj3naqYexr5dZJq9bGnZIjq1pvzvbvlLzdz1_vHtPF88PT3e0i1QJYSJXhWqNlNUIFBjKjBdqqQmZlzipUAIhC1VBokBlgxqXRqqilRFFltpDZlFztcldu-ByND2XXeG3aVvVmGH1JJWcZy2We_49myEAgLVhEL36hy2F0fVwkUkJKjpTzSF3vKO0G752x5co1XTxBSaHcuCiji3LjoowuIn65D1Veq9bGo-rGf88wFBR5LiI328eqrnJNVPPj97-CvwCOwJfo</recordid><startdate>20130710</startdate><enddate>20130710</enddate><creator>Kreilos, Tobias</creator><creator>Veble, Gregor</creator><creator>Schneider, Tobias M.</creator><creator>Eckhardt, Bruno</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20130710</creationdate><title>Edge states for the turbulence transition in the asymptotic suction boundary layer</title><author>Kreilos, Tobias ; Veble, Gregor ; Schneider, Tobias M. ; Eckhardt, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-ae4cc7f2d70b0e03ec57fbb72f682b7a00775ad09c06307346eca9d6675b3f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Streak</topic><topic>Transition to turbulence</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreilos, Tobias</creatorcontrib><creatorcontrib>Veble, Gregor</creatorcontrib><creatorcontrib>Schneider, Tobias M.</creatorcontrib><creatorcontrib>Eckhardt, Bruno</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreilos, Tobias</au><au>Veble, Gregor</au><au>Schneider, Tobias M.</au><au>Eckhardt, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge states for the turbulence transition in the asymptotic suction boundary layer</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2013-07-10</date><risdate>2013</risdate><volume>726</volume><spage>100</spage><epage>122</epage><pages>100-122</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We demonstrate the existence of an exact invariant solution to the Navier–Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability boundary between laminar and turbulent dynamics. Its dynamics captures both the interplay of downstream-oriented vortex pairs and streaks observed in numerous shear flows as well as the energetic bursting that is characteristic for boundary layers. By embedding the flow into a family of flows that interpolates between plane Couette flow and the boundary layer, we demonstrate that the periodic orbit emerges in a saddle–node infinite-period (SNIPER) bifurcation of two symmetry-related travelling-wave solutions of plane Couette flow. Physically, the long period is due to a slow streak instability, which leads to a violent breakup of a streak associated with the bursting and the reformation of the streak at a different spanwise location. We show that the orbit is structurally stable when varying both the Reynolds number and the domain size.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2013.212</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2013-07, Vol.726, p.100-122 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642328688 |
source | Cambridge Journals |
subjects | Asymptotic properties Boundary layer Boundary layers Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) Navier-Stokes equations Physics Streak Transition to turbulence Turbulence Turbulent flow Turbulent flows, convection, and heat transfer |
title | Edge states for the turbulence transition in the asymptotic suction boundary layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20states%20for%20the%20turbulence%20transition%20in%20the%20asymptotic%20suction%20boundary%20layer&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Kreilos,%20Tobias&rft.date=2013-07-10&rft.volume=726&rft.spage=100&rft.epage=122&rft.pages=100-122&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2013.212&rft_dat=%3Cproquest_cross%3E2983451951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356647144&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2013_212&rfr_iscdi=true |