Examining Mechanisms of Variability within the Pacific Storm Track: Upstream Seeding and Jet-Core Strength

This paper examines how variations in two mechanisms, upstream seeding and jet-core strength, relate to storminess within the cold season (October–April) Pacific storm track. It is found that about 17% of observed storminess covaries with the strength of the upstream wave source, and the relationshi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2013-07, Vol.26 (14), p.5242-5259
Hauptverfasser: Penny, Sandra M., Battisti, David S., Roe, Gerard H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5259
container_issue 14
container_start_page 5242
container_title Journal of climate
container_volume 26
creator Penny, Sandra M.
Battisti, David S.
Roe, Gerard H.
description This paper examines how variations in two mechanisms, upstream seeding and jet-core strength, relate to storminess within the cold season (October–April) Pacific storm track. It is found that about 17% of observed storminess covaries with the strength of the upstream wave source, and the relationship is robust throughout the cold season and for both the Pacific and Atlantic basins. Further analyses of the intraseasonal variability in the strength and structure of the wintertime [December–February (DJF)] Pacific jet stream draw upon both Eulerian-variance and feature-tracking statistics to diagnose why winter months with a strong-core jet stream have weaker storminess than those with a weak-core jet stream. Contrary to expectations, it is shown that the basic spatial patterns actually conform to a simple linear picture: regions with a weaker jet have weaker storminess. The overall decrease in storminess is most strongly linked to the weaker amplitude of individual storms in strong-core months. Previously proposed mechanisms are evaluated in the context of these new results. Last, this analysis provides further evidence that the midwinter suppression in storminess over the North Pacific Ocean is primarily due to a notable lack of storminess upstream of the Pacific storm track in the heart of winter.
doi_str_mv 10.1175/jcli-d-12-00017.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642328437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26192694</jstor_id><sourcerecordid>26192694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-5a6aa14a7615c2fe3a87bf909c7299b97ae6c1c8533e6afd15d5c9514553d2a53</originalsourceid><addsrcrecordid>eNqFkUtrWzEQhUVpoG6aH5BF4UIJZHNdjZ5Xy9Z5FocG8tiKsaxby7kPR7omyb-vXIcUskhWs5jvHGbOIWQf6BhAy-9L14RyXgIrKaWgx_CBjEAyWlIh2EcyopURZaWl_EQ-p7TMDFOUjsjP40dsQxe6P8WFdwvsQmpT0dfFLcaAs9CE4al4CMMidMWw8MUlulAHV1wNfWyL64ju7gvZqbFJfu957pKbk-PryVk5_X16PvkxLZ1k1VBKVIggUCuQjtWeY6VntaHGaWbMzGj0yoGrJOdeYT0HOZfOSBBS8jlDyXfJ4dZ3Ffv7tU-DbUNyvmmw8_06WVCCcVYJrt9HBRiumOY8o99eoct-Hbv8iGUVcKOFoG9S2YvJSuSAMwVbysU-pehru4qhxfhkgdpNTfbXZHpujyww-68mC1lz8OyMyWFTR-xcSC9CpmU-FTbeX7fcMuXo_-8VGKaM4H8BvsqZkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412584089</pqid></control><display><type>article</type><title>Examining Mechanisms of Variability within the Pacific Storm Track: Upstream Seeding and Jet-Core Strength</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Penny, Sandra M. ; Battisti, David S. ; Roe, Gerard H.</creator><creatorcontrib>Penny, Sandra M. ; Battisti, David S. ; Roe, Gerard H.</creatorcontrib><description>This paper examines how variations in two mechanisms, upstream seeding and jet-core strength, relate to storminess within the cold season (October–April) Pacific storm track. It is found that about 17% of observed storminess covaries with the strength of the upstream wave source, and the relationship is robust throughout the cold season and for both the Pacific and Atlantic basins. Further analyses of the intraseasonal variability in the strength and structure of the wintertime [December–February (DJF)] Pacific jet stream draw upon both Eulerian-variance and feature-tracking statistics to diagnose why winter months with a strong-core jet stream have weaker storminess than those with a weak-core jet stream. Contrary to expectations, it is shown that the basic spatial patterns actually conform to a simple linear picture: regions with a weaker jet have weaker storminess. The overall decrease in storminess is most strongly linked to the weaker amplitude of individual storms in strong-core months. Previously proposed mechanisms are evaluated in the context of these new results. Last, this analysis provides further evidence that the midwinter suppression in storminess over the North Pacific Ocean is primarily due to a notable lack of storminess upstream of the Pacific storm track in the heart of winter.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-12-00017.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Cold ; Cold season ; Cold storage ; Correlations ; Datasets ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Heart ; Inverse relationships ; Jet stream ; Jet streams ; Jet streams (meteorology) ; Marine ; Meteorology ; Nucleation ; Rivers ; Seasonal variations ; Seasons ; Seeding ; Statistical analysis ; Statistical methods ; Statistical variance ; Storm seasons ; Storm tracks ; Storms ; Storms, hurricanes, tornadoes, thunderstorms ; Strength ; Studies ; Temperate regions ; Tracking ; Upstream ; Variability ; Winter</subject><ispartof>Journal of climate, 2013-07, Vol.26 (14), p.5242-5259</ispartof><rights>2013 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jul 15, 2013</rights><rights>Copyright American Meteorological Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-5a6aa14a7615c2fe3a87bf909c7299b97ae6c1c8533e6afd15d5c9514553d2a53</citedby><cites>FETCH-LOGICAL-c528t-5a6aa14a7615c2fe3a87bf909c7299b97ae6c1c8533e6afd15d5c9514553d2a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26192694$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26192694$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27519319$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Penny, Sandra M.</creatorcontrib><creatorcontrib>Battisti, David S.</creatorcontrib><creatorcontrib>Roe, Gerard H.</creatorcontrib><title>Examining Mechanisms of Variability within the Pacific Storm Track: Upstream Seeding and Jet-Core Strength</title><title>Journal of climate</title><description>This paper examines how variations in two mechanisms, upstream seeding and jet-core strength, relate to storminess within the cold season (October–April) Pacific storm track. It is found that about 17% of observed storminess covaries with the strength of the upstream wave source, and the relationship is robust throughout the cold season and for both the Pacific and Atlantic basins. Further analyses of the intraseasonal variability in the strength and structure of the wintertime [December–February (DJF)] Pacific jet stream draw upon both Eulerian-variance and feature-tracking statistics to diagnose why winter months with a strong-core jet stream have weaker storminess than those with a weak-core jet stream. Contrary to expectations, it is shown that the basic spatial patterns actually conform to a simple linear picture: regions with a weaker jet have weaker storminess. The overall decrease in storminess is most strongly linked to the weaker amplitude of individual storms in strong-core months. Previously proposed mechanisms are evaluated in the context of these new results. Last, this analysis provides further evidence that the midwinter suppression in storminess over the North Pacific Ocean is primarily due to a notable lack of storminess upstream of the Pacific storm track in the heart of winter.</description><subject>Cold</subject><subject>Cold season</subject><subject>Cold storage</subject><subject>Correlations</subject><subject>Datasets</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Heart</subject><subject>Inverse relationships</subject><subject>Jet stream</subject><subject>Jet streams</subject><subject>Jet streams (meteorology)</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Nucleation</subject><subject>Rivers</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Seeding</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Storm seasons</subject><subject>Storm tracks</subject><subject>Storms</subject><subject>Storms, hurricanes, tornadoes, thunderstorms</subject><subject>Strength</subject><subject>Studies</subject><subject>Temperate regions</subject><subject>Tracking</subject><subject>Upstream</subject><subject>Variability</subject><subject>Winter</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtrWzEQhUVpoG6aH5BF4UIJZHNdjZ5Xy9Z5FocG8tiKsaxby7kPR7omyb-vXIcUskhWs5jvHGbOIWQf6BhAy-9L14RyXgIrKaWgx_CBjEAyWlIh2EcyopURZaWl_EQ-p7TMDFOUjsjP40dsQxe6P8WFdwvsQmpT0dfFLcaAs9CE4al4CMMidMWw8MUlulAHV1wNfWyL64ju7gvZqbFJfu957pKbk-PryVk5_X16PvkxLZ1k1VBKVIggUCuQjtWeY6VntaHGaWbMzGj0yoGrJOdeYT0HOZfOSBBS8jlDyXfJ4dZ3Ffv7tU-DbUNyvmmw8_06WVCCcVYJrt9HBRiumOY8o99eoct-Hbv8iGUVcKOFoG9S2YvJSuSAMwVbysU-pehru4qhxfhkgdpNTfbXZHpujyww-68mC1lz8OyMyWFTR-xcSC9CpmU-FTbeX7fcMuXo_-8VGKaM4H8BvsqZkQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Penny, Sandra M.</creator><creator>Battisti, David S.</creator><creator>Roe, Gerard H.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>PRINS</scope><scope>7TN</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Examining Mechanisms of Variability within the Pacific Storm Track</title><author>Penny, Sandra M. ; Battisti, David S. ; Roe, Gerard H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-5a6aa14a7615c2fe3a87bf909c7299b97ae6c1c8533e6afd15d5c9514553d2a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cold</topic><topic>Cold season</topic><topic>Cold storage</topic><topic>Correlations</topic><topic>Datasets</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Heart</topic><topic>Inverse relationships</topic><topic>Jet stream</topic><topic>Jet streams</topic><topic>Jet streams (meteorology)</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Nucleation</topic><topic>Rivers</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Seeding</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Storm seasons</topic><topic>Storm tracks</topic><topic>Storms</topic><topic>Storms, hurricanes, tornadoes, thunderstorms</topic><topic>Strength</topic><topic>Studies</topic><topic>Temperate regions</topic><topic>Tracking</topic><topic>Upstream</topic><topic>Variability</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penny, Sandra M.</creatorcontrib><creatorcontrib>Battisti, David S.</creatorcontrib><creatorcontrib>Roe, Gerard H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>ProQuest Central China</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penny, Sandra M.</au><au>Battisti, David S.</au><au>Roe, Gerard H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining Mechanisms of Variability within the Pacific Storm Track: Upstream Seeding and Jet-Core Strength</atitle><jtitle>Journal of climate</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>26</volume><issue>14</issue><spage>5242</spage><epage>5259</epage><pages>5242-5259</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>This paper examines how variations in two mechanisms, upstream seeding and jet-core strength, relate to storminess within the cold season (October–April) Pacific storm track. It is found that about 17% of observed storminess covaries with the strength of the upstream wave source, and the relationship is robust throughout the cold season and for both the Pacific and Atlantic basins. Further analyses of the intraseasonal variability in the strength and structure of the wintertime [December–February (DJF)] Pacific jet stream draw upon both Eulerian-variance and feature-tracking statistics to diagnose why winter months with a strong-core jet stream have weaker storminess than those with a weak-core jet stream. Contrary to expectations, it is shown that the basic spatial patterns actually conform to a simple linear picture: regions with a weaker jet have weaker storminess. The overall decrease in storminess is most strongly linked to the weaker amplitude of individual storms in strong-core months. Previously proposed mechanisms are evaluated in the context of these new results. Last, this analysis provides further evidence that the midwinter suppression in storminess over the North Pacific Ocean is primarily due to a notable lack of storminess upstream of the Pacific storm track in the heart of winter.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-12-00017.1</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2013-07, Vol.26 (14), p.5242-5259
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_1642328437
source American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Cold
Cold season
Cold storage
Correlations
Datasets
Earth, ocean, space
Exact sciences and technology
External geophysics
Heart
Inverse relationships
Jet stream
Jet streams
Jet streams (meteorology)
Marine
Meteorology
Nucleation
Rivers
Seasonal variations
Seasons
Seeding
Statistical analysis
Statistical methods
Statistical variance
Storm seasons
Storm tracks
Storms
Storms, hurricanes, tornadoes, thunderstorms
Strength
Studies
Temperate regions
Tracking
Upstream
Variability
Winter
title Examining Mechanisms of Variability within the Pacific Storm Track: Upstream Seeding and Jet-Core Strength
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20Mechanisms%20of%20Variability%20within%20the%20Pacific%20Storm%20Track:%20Upstream%20Seeding%20and%20Jet-Core%20Strength&rft.jtitle=Journal%20of%20climate&rft.au=Penny,%20Sandra%20M.&rft.date=2013-07-01&rft.volume=26&rft.issue=14&rft.spage=5242&rft.epage=5259&rft.pages=5242-5259&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-12-00017.1&rft_dat=%3Cjstor_proqu%3E26192694%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412584089&rft_id=info:pmid/&rft_jstor_id=26192694&rfr_iscdi=true