On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number
In this paper, the effects of cylinder spacing, cylinder oscillation frequency, amplitude of cylinder oscillations and Reynolds number on the ensuing flow regimes and energy transition for flow across a row of transversely oscillating cylinders have been studied numerically using the lattice Boltzma...
Gespeichert in:
Veröffentlicht in: | Journal of fluids and structures 2012-05, Vol.31, p.1-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Journal of fluids and structures |
container_volume | 31 |
creator | Sewatkar, C.M. Sharma, Atul Agrawal, Amit |
description | In this paper, the effects of cylinder spacing, cylinder oscillation frequency, amplitude of cylinder oscillations and Reynolds number on the ensuing flow regimes and energy transition for flow across a row of transversely oscillating cylinders have been studied numerically using the lattice Boltzmann method. The lift and drag coefficient signals are analyzed in detail for finding the extent of lock-on regime and wake interaction mechanism at different spacings. It is noticed that the magnitude of the mean drag coefficient is large at small spacings, which is consistent with a strong wake interaction at small spacings. The effect of wake interaction can also be noticed from the non-monotonic variation of rms lift. The average energy transfer per cylinder oscillation cycle is large when the cylinders oscillate with a frequency near to the natural vortex shedding frequency. The direction of energy transfer changes between positive and negative values with small changes in the cylinder oscillation frequency, suggesting that the direction of energy transfer is very sensitive to this parameter. It is shown that the instantaneous lift coefficient and the cylinder velocity govern the energy transfer from or to the fluid. While the different parameters affect the flow regimes, the cylinder oscillation frequency primarily governs the energy transfer. |
doi_str_mv | 10.1016/j.jfluidstructs.2012.03.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642327051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889974612000564</els_id><sourcerecordid>1038243114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-8fb09d8afc10e0b91017e9326e7a1c0df856a7e62d1a163d087fe3e004cb04da3</originalsourceid><addsrcrecordid>eNqNkV9rHCEUxaW00G3a7yCUQl5mctX5J30qIWkLgYXQPour1-DW1URnEubb12VDoU_Jk1z83XP0HEI-M2gZsOFi3-5dWLwtc17MXFoOjLcgWgD-hmwYyL6ZBs7fkg1Mk2zk2A3vyYdS9gAgO8E25M82UoyY71Y6Zx2Lw0x9pC6kJ6pzWqKlmuY6JHcCHjEXDCtNxfgQ9OzjHS0Pi85IzRp8tPWe6pkeBW5xjSnYQuNy2GH-SN45HQp-ej7PyO_rq1-XP5qb7fefl99uGtNxMTeT24G0k3aGAcJO1p-OKAUfcNTMgHVTP-gRB26ZZoOwMI0OBQJ0Zged1eKMnJ9073N6WLDM6uCLwfraiGkpig3Vh4_Qs5dREBOvQbGuol9PqMmplIxO3Wd_0HmtkDq2ofbqvzbUsQ0FQtU26vaXZyNdjA6uRml8-SfBeyl6xmTlrk4c1oAePWZVc8Zo0PqMZlY2-Vf5_QUitKo6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038243114</pqid></control><display><type>article</type><title>On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number</title><source>Elsevier ScienceDirect Journals</source><creator>Sewatkar, C.M. ; Sharma, Atul ; Agrawal, Amit</creator><creatorcontrib>Sewatkar, C.M. ; Sharma, Atul ; Agrawal, Amit</creatorcontrib><description>In this paper, the effects of cylinder spacing, cylinder oscillation frequency, amplitude of cylinder oscillations and Reynolds number on the ensuing flow regimes and energy transition for flow across a row of transversely oscillating cylinders have been studied numerically using the lattice Boltzmann method. The lift and drag coefficient signals are analyzed in detail for finding the extent of lock-on regime and wake interaction mechanism at different spacings. It is noticed that the magnitude of the mean drag coefficient is large at small spacings, which is consistent with a strong wake interaction at small spacings. The effect of wake interaction can also be noticed from the non-monotonic variation of rms lift. The average energy transfer per cylinder oscillation cycle is large when the cylinders oscillate with a frequency near to the natural vortex shedding frequency. The direction of energy transfer changes between positive and negative values with small changes in the cylinder oscillation frequency, suggesting that the direction of energy transfer is very sensitive to this parameter. It is shown that the instantaneous lift coefficient and the cylinder velocity govern the energy transfer from or to the fluid. While the different parameters affect the flow regimes, the cylinder oscillation frequency primarily governs the energy transfer.</description><identifier>ISSN: 0889-9746</identifier><identifier>EISSN: 1095-8622</identifier><identifier>DOI: 10.1016/j.jfluidstructs.2012.03.002</identifier><identifier>CODEN: JFSTEF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aerodynamics ; Applied fluid mechanics ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Cylinders ; Energy transfer ; Exact sciences and technology ; Flow map ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Lattice Boltzmann method ; Lift ; Mathematical models ; Multiple cylinders ; Oscillations ; Physics ; Rotational flow and vorticity ; Separated flows ; Turbulent flows, convection, and heat transfer ; Wake interaction ; Wakes</subject><ispartof>Journal of fluids and structures, 2012-05, Vol.31, p.1-17</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-8fb09d8afc10e0b91017e9326e7a1c0df856a7e62d1a163d087fe3e004cb04da3</citedby><cites>FETCH-LOGICAL-c423t-8fb09d8afc10e0b91017e9326e7a1c0df856a7e62d1a163d087fe3e004cb04da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0889974612000564$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25935119$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sewatkar, C.M.</creatorcontrib><creatorcontrib>Sharma, Atul</creatorcontrib><creatorcontrib>Agrawal, Amit</creatorcontrib><title>On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number</title><title>Journal of fluids and structures</title><description>In this paper, the effects of cylinder spacing, cylinder oscillation frequency, amplitude of cylinder oscillations and Reynolds number on the ensuing flow regimes and energy transition for flow across a row of transversely oscillating cylinders have been studied numerically using the lattice Boltzmann method. The lift and drag coefficient signals are analyzed in detail for finding the extent of lock-on regime and wake interaction mechanism at different spacings. It is noticed that the magnitude of the mean drag coefficient is large at small spacings, which is consistent with a strong wake interaction at small spacings. The effect of wake interaction can also be noticed from the non-monotonic variation of rms lift. The average energy transfer per cylinder oscillation cycle is large when the cylinders oscillate with a frequency near to the natural vortex shedding frequency. The direction of energy transfer changes between positive and negative values with small changes in the cylinder oscillation frequency, suggesting that the direction of energy transfer is very sensitive to this parameter. It is shown that the instantaneous lift coefficient and the cylinder velocity govern the energy transfer from or to the fluid. While the different parameters affect the flow regimes, the cylinder oscillation frequency primarily governs the energy transfer.</description><subject>Aerodynamics</subject><subject>Applied fluid mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Cylinders</subject><subject>Energy transfer</subject><subject>Exact sciences and technology</subject><subject>Flow map</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lattice Boltzmann method</subject><subject>Lift</subject><subject>Mathematical models</subject><subject>Multiple cylinders</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Rotational flow and vorticity</subject><subject>Separated flows</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Wake interaction</subject><subject>Wakes</subject><issn>0889-9746</issn><issn>1095-8622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkV9rHCEUxaW00G3a7yCUQl5mctX5J30qIWkLgYXQPour1-DW1URnEubb12VDoU_Jk1z83XP0HEI-M2gZsOFi3-5dWLwtc17MXFoOjLcgWgD-hmwYyL6ZBs7fkg1Mk2zk2A3vyYdS9gAgO8E25M82UoyY71Y6Zx2Lw0x9pC6kJ6pzWqKlmuY6JHcCHjEXDCtNxfgQ9OzjHS0Pi85IzRp8tPWe6pkeBW5xjSnYQuNy2GH-SN45HQp-ej7PyO_rq1-XP5qb7fefl99uGtNxMTeT24G0k3aGAcJO1p-OKAUfcNTMgHVTP-gRB26ZZoOwMI0OBQJ0Zged1eKMnJ9073N6WLDM6uCLwfraiGkpig3Vh4_Qs5dREBOvQbGuol9PqMmplIxO3Wd_0HmtkDq2ofbqvzbUsQ0FQtU26vaXZyNdjA6uRml8-SfBeyl6xmTlrk4c1oAePWZVc8Zo0PqMZlY2-Vf5_QUitKo6</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Sewatkar, C.M.</creator><creator>Sharma, Atul</creator><creator>Agrawal, Amit</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120501</creationdate><title>On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number</title><author>Sewatkar, C.M. ; Sharma, Atul ; Agrawal, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-8fb09d8afc10e0b91017e9326e7a1c0df856a7e62d1a163d087fe3e004cb04da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerodynamics</topic><topic>Applied fluid mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Cylinders</topic><topic>Energy transfer</topic><topic>Exact sciences and technology</topic><topic>Flow map</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lattice Boltzmann method</topic><topic>Lift</topic><topic>Mathematical models</topic><topic>Multiple cylinders</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Rotational flow and vorticity</topic><topic>Separated flows</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Wake interaction</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sewatkar, C.M.</creatorcontrib><creatorcontrib>Sharma, Atul</creatorcontrib><creatorcontrib>Agrawal, Amit</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of fluids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sewatkar, C.M.</au><au>Sharma, Atul</au><au>Agrawal, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number</atitle><jtitle>Journal of fluids and structures</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>31</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0889-9746</issn><eissn>1095-8622</eissn><coden>JFSTEF</coden><abstract>In this paper, the effects of cylinder spacing, cylinder oscillation frequency, amplitude of cylinder oscillations and Reynolds number on the ensuing flow regimes and energy transition for flow across a row of transversely oscillating cylinders have been studied numerically using the lattice Boltzmann method. The lift and drag coefficient signals are analyzed in detail for finding the extent of lock-on regime and wake interaction mechanism at different spacings. It is noticed that the magnitude of the mean drag coefficient is large at small spacings, which is consistent with a strong wake interaction at small spacings. The effect of wake interaction can also be noticed from the non-monotonic variation of rms lift. The average energy transfer per cylinder oscillation cycle is large when the cylinders oscillate with a frequency near to the natural vortex shedding frequency. The direction of energy transfer changes between positive and negative values with small changes in the cylinder oscillation frequency, suggesting that the direction of energy transfer is very sensitive to this parameter. It is shown that the instantaneous lift coefficient and the cylinder velocity govern the energy transfer from or to the fluid. While the different parameters affect the flow regimes, the cylinder oscillation frequency primarily governs the energy transfer.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfluidstructs.2012.03.002</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-9746 |
ispartof | Journal of fluids and structures, 2012-05, Vol.31, p.1-17 |
issn | 0889-9746 1095-8622 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642327051 |
source | Elsevier ScienceDirect Journals |
subjects | Aerodynamics Applied fluid mechanics Computational fluid dynamics Computational methods in fluid dynamics Cylinders Energy transfer Exact sciences and technology Flow map Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) Lattice Boltzmann method Lift Mathematical models Multiple cylinders Oscillations Physics Rotational flow and vorticity Separated flows Turbulent flows, convection, and heat transfer Wake interaction Wakes |
title | On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20energy%20transfer%20in%20flow%20around%20a%20row%20of%20transversely%20oscillating%20square%20cylinders%20at%20low%20Reynolds%20number&rft.jtitle=Journal%20of%20fluids%20and%20structures&rft.au=Sewatkar,%20C.M.&rft.date=2012-05-01&rft.volume=31&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0889-9746&rft.eissn=1095-8622&rft.coden=JFSTEF&rft_id=info:doi/10.1016/j.jfluidstructs.2012.03.002&rft_dat=%3Cproquest_cross%3E1038243114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038243114&rft_id=info:pmid/&rft_els_id=S0889974612000564&rfr_iscdi=true |