On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number

In this paper, the effects of cylinder spacing, cylinder oscillation frequency, amplitude of cylinder oscillations and Reynolds number on the ensuing flow regimes and energy transition for flow across a row of transversely oscillating cylinders have been studied numerically using the lattice Boltzma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids and structures 2012-05, Vol.31, p.1-17
Hauptverfasser: Sewatkar, C.M., Sharma, Atul, Agrawal, Amit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 1
container_title Journal of fluids and structures
container_volume 31
creator Sewatkar, C.M.
Sharma, Atul
Agrawal, Amit
description In this paper, the effects of cylinder spacing, cylinder oscillation frequency, amplitude of cylinder oscillations and Reynolds number on the ensuing flow regimes and energy transition for flow across a row of transversely oscillating cylinders have been studied numerically using the lattice Boltzmann method. The lift and drag coefficient signals are analyzed in detail for finding the extent of lock-on regime and wake interaction mechanism at different spacings. It is noticed that the magnitude of the mean drag coefficient is large at small spacings, which is consistent with a strong wake interaction at small spacings. The effect of wake interaction can also be noticed from the non-monotonic variation of rms lift. The average energy transfer per cylinder oscillation cycle is large when the cylinders oscillate with a frequency near to the natural vortex shedding frequency. The direction of energy transfer changes between positive and negative values with small changes in the cylinder oscillation frequency, suggesting that the direction of energy transfer is very sensitive to this parameter. It is shown that the instantaneous lift coefficient and the cylinder velocity govern the energy transfer from or to the fluid. While the different parameters affect the flow regimes, the cylinder oscillation frequency primarily governs the energy transfer.
doi_str_mv 10.1016/j.jfluidstructs.2012.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642327051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889974612000564</els_id><sourcerecordid>1038243114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-8fb09d8afc10e0b91017e9326e7a1c0df856a7e62d1a163d087fe3e004cb04da3</originalsourceid><addsrcrecordid>eNqNkV9rHCEUxaW00G3a7yCUQl5mctX5J30qIWkLgYXQPour1-DW1URnEubb12VDoU_Jk1z83XP0HEI-M2gZsOFi3-5dWLwtc17MXFoOjLcgWgD-hmwYyL6ZBs7fkg1Mk2zk2A3vyYdS9gAgO8E25M82UoyY71Y6Zx2Lw0x9pC6kJ6pzWqKlmuY6JHcCHjEXDCtNxfgQ9OzjHS0Pi85IzRp8tPWe6pkeBW5xjSnYQuNy2GH-SN45HQp-ej7PyO_rq1-XP5qb7fefl99uGtNxMTeT24G0k3aGAcJO1p-OKAUfcNTMgHVTP-gRB26ZZoOwMI0OBQJ0Zged1eKMnJ9073N6WLDM6uCLwfraiGkpig3Vh4_Qs5dREBOvQbGuol9PqMmplIxO3Wd_0HmtkDq2ofbqvzbUsQ0FQtU26vaXZyNdjA6uRml8-SfBeyl6xmTlrk4c1oAePWZVc8Zo0PqMZlY2-Vf5_QUitKo6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038243114</pqid></control><display><type>article</type><title>On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number</title><source>Elsevier ScienceDirect Journals</source><creator>Sewatkar, C.M. ; Sharma, Atul ; Agrawal, Amit</creator><creatorcontrib>Sewatkar, C.M. ; Sharma, Atul ; Agrawal, Amit</creatorcontrib><description>In this paper, the effects of cylinder spacing, cylinder oscillation frequency, amplitude of cylinder oscillations and Reynolds number on the ensuing flow regimes and energy transition for flow across a row of transversely oscillating cylinders have been studied numerically using the lattice Boltzmann method. The lift and drag coefficient signals are analyzed in detail for finding the extent of lock-on regime and wake interaction mechanism at different spacings. It is noticed that the magnitude of the mean drag coefficient is large at small spacings, which is consistent with a strong wake interaction at small spacings. The effect of wake interaction can also be noticed from the non-monotonic variation of rms lift. The average energy transfer per cylinder oscillation cycle is large when the cylinders oscillate with a frequency near to the natural vortex shedding frequency. The direction of energy transfer changes between positive and negative values with small changes in the cylinder oscillation frequency, suggesting that the direction of energy transfer is very sensitive to this parameter. It is shown that the instantaneous lift coefficient and the cylinder velocity govern the energy transfer from or to the fluid. While the different parameters affect the flow regimes, the cylinder oscillation frequency primarily governs the energy transfer.</description><identifier>ISSN: 0889-9746</identifier><identifier>EISSN: 1095-8622</identifier><identifier>DOI: 10.1016/j.jfluidstructs.2012.03.002</identifier><identifier>CODEN: JFSTEF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aerodynamics ; Applied fluid mechanics ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Cylinders ; Energy transfer ; Exact sciences and technology ; Flow map ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Lattice Boltzmann method ; Lift ; Mathematical models ; Multiple cylinders ; Oscillations ; Physics ; Rotational flow and vorticity ; Separated flows ; Turbulent flows, convection, and heat transfer ; Wake interaction ; Wakes</subject><ispartof>Journal of fluids and structures, 2012-05, Vol.31, p.1-17</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-8fb09d8afc10e0b91017e9326e7a1c0df856a7e62d1a163d087fe3e004cb04da3</citedby><cites>FETCH-LOGICAL-c423t-8fb09d8afc10e0b91017e9326e7a1c0df856a7e62d1a163d087fe3e004cb04da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0889974612000564$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25935119$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sewatkar, C.M.</creatorcontrib><creatorcontrib>Sharma, Atul</creatorcontrib><creatorcontrib>Agrawal, Amit</creatorcontrib><title>On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number</title><title>Journal of fluids and structures</title><description>In this paper, the effects of cylinder spacing, cylinder oscillation frequency, amplitude of cylinder oscillations and Reynolds number on the ensuing flow regimes and energy transition for flow across a row of transversely oscillating cylinders have been studied numerically using the lattice Boltzmann method. The lift and drag coefficient signals are analyzed in detail for finding the extent of lock-on regime and wake interaction mechanism at different spacings. It is noticed that the magnitude of the mean drag coefficient is large at small spacings, which is consistent with a strong wake interaction at small spacings. The effect of wake interaction can also be noticed from the non-monotonic variation of rms lift. The average energy transfer per cylinder oscillation cycle is large when the cylinders oscillate with a frequency near to the natural vortex shedding frequency. The direction of energy transfer changes between positive and negative values with small changes in the cylinder oscillation frequency, suggesting that the direction of energy transfer is very sensitive to this parameter. It is shown that the instantaneous lift coefficient and the cylinder velocity govern the energy transfer from or to the fluid. While the different parameters affect the flow regimes, the cylinder oscillation frequency primarily governs the energy transfer.</description><subject>Aerodynamics</subject><subject>Applied fluid mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Cylinders</subject><subject>Energy transfer</subject><subject>Exact sciences and technology</subject><subject>Flow map</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lattice Boltzmann method</subject><subject>Lift</subject><subject>Mathematical models</subject><subject>Multiple cylinders</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Rotational flow and vorticity</subject><subject>Separated flows</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Wake interaction</subject><subject>Wakes</subject><issn>0889-9746</issn><issn>1095-8622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkV9rHCEUxaW00G3a7yCUQl5mctX5J30qIWkLgYXQPour1-DW1URnEubb12VDoU_Jk1z83XP0HEI-M2gZsOFi3-5dWLwtc17MXFoOjLcgWgD-hmwYyL6ZBs7fkg1Mk2zk2A3vyYdS9gAgO8E25M82UoyY71Y6Zx2Lw0x9pC6kJ6pzWqKlmuY6JHcCHjEXDCtNxfgQ9OzjHS0Pi85IzRp8tPWe6pkeBW5xjSnYQuNy2GH-SN45HQp-ej7PyO_rq1-XP5qb7fefl99uGtNxMTeT24G0k3aGAcJO1p-OKAUfcNTMgHVTP-gRB26ZZoOwMI0OBQJ0Zged1eKMnJ9073N6WLDM6uCLwfraiGkpig3Vh4_Qs5dREBOvQbGuol9PqMmplIxO3Wd_0HmtkDq2ofbqvzbUsQ0FQtU26vaXZyNdjA6uRml8-SfBeyl6xmTlrk4c1oAePWZVc8Zo0PqMZlY2-Vf5_QUitKo6</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Sewatkar, C.M.</creator><creator>Sharma, Atul</creator><creator>Agrawal, Amit</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120501</creationdate><title>On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number</title><author>Sewatkar, C.M. ; Sharma, Atul ; Agrawal, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-8fb09d8afc10e0b91017e9326e7a1c0df856a7e62d1a163d087fe3e004cb04da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerodynamics</topic><topic>Applied fluid mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Cylinders</topic><topic>Energy transfer</topic><topic>Exact sciences and technology</topic><topic>Flow map</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lattice Boltzmann method</topic><topic>Lift</topic><topic>Mathematical models</topic><topic>Multiple cylinders</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Rotational flow and vorticity</topic><topic>Separated flows</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Wake interaction</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sewatkar, C.M.</creatorcontrib><creatorcontrib>Sharma, Atul</creatorcontrib><creatorcontrib>Agrawal, Amit</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of fluids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sewatkar, C.M.</au><au>Sharma, Atul</au><au>Agrawal, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number</atitle><jtitle>Journal of fluids and structures</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>31</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0889-9746</issn><eissn>1095-8622</eissn><coden>JFSTEF</coden><abstract>In this paper, the effects of cylinder spacing, cylinder oscillation frequency, amplitude of cylinder oscillations and Reynolds number on the ensuing flow regimes and energy transition for flow across a row of transversely oscillating cylinders have been studied numerically using the lattice Boltzmann method. The lift and drag coefficient signals are analyzed in detail for finding the extent of lock-on regime and wake interaction mechanism at different spacings. It is noticed that the magnitude of the mean drag coefficient is large at small spacings, which is consistent with a strong wake interaction at small spacings. The effect of wake interaction can also be noticed from the non-monotonic variation of rms lift. The average energy transfer per cylinder oscillation cycle is large when the cylinders oscillate with a frequency near to the natural vortex shedding frequency. The direction of energy transfer changes between positive and negative values with small changes in the cylinder oscillation frequency, suggesting that the direction of energy transfer is very sensitive to this parameter. It is shown that the instantaneous lift coefficient and the cylinder velocity govern the energy transfer from or to the fluid. While the different parameters affect the flow regimes, the cylinder oscillation frequency primarily governs the energy transfer.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfluidstructs.2012.03.002</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0889-9746
ispartof Journal of fluids and structures, 2012-05, Vol.31, p.1-17
issn 0889-9746
1095-8622
language eng
recordid cdi_proquest_miscellaneous_1642327051
source Elsevier ScienceDirect Journals
subjects Aerodynamics
Applied fluid mechanics
Computational fluid dynamics
Computational methods in fluid dynamics
Cylinders
Energy transfer
Exact sciences and technology
Flow map
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
Lattice Boltzmann method
Lift
Mathematical models
Multiple cylinders
Oscillations
Physics
Rotational flow and vorticity
Separated flows
Turbulent flows, convection, and heat transfer
Wake interaction
Wakes
title On energy transfer in flow around a row of transversely oscillating square cylinders at low Reynolds number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20energy%20transfer%20in%20flow%20around%20a%20row%20of%20transversely%20oscillating%20square%20cylinders%20at%20low%20Reynolds%20number&rft.jtitle=Journal%20of%20fluids%20and%20structures&rft.au=Sewatkar,%20C.M.&rft.date=2012-05-01&rft.volume=31&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0889-9746&rft.eissn=1095-8622&rft.coden=JFSTEF&rft_id=info:doi/10.1016/j.jfluidstructs.2012.03.002&rft_dat=%3Cproquest_cross%3E1038243114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038243114&rft_id=info:pmid/&rft_els_id=S0889974612000564&rfr_iscdi=true