On the Use of Reanalysis Data for Downscaling
In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice is provided. To this end, the similarity of middle-tropospheric variables—which are important for the development of both dynamical and statistical downscaling schemes—from 40-yr European Cent...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2012-04, Vol.25 (7), p.2517-2526 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2526 |
---|---|
container_issue | 7 |
container_start_page | 2517 |
container_title | Journal of climate |
container_volume | 25 |
creator | Brands, S. Gutiérrez, J. M. Herrera, S. Cofiño, A. S. |
description | In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice is provided. To this end, the similarity of middle-tropospheric variables—which are important for the development of both dynamical and statistical downscaling schemes—from 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR reanalysis data on a daily time scale is assessed. For estimating the distributional similarity, two comparable scores are used: the two-sample Kolmogorov–Smirnov statistic and the probability density function (PDF) score. In addition, the similarity of the day-to-day sequences is evaluated with the Pearson correlation coefficient. As the most important results demonstrated, the PDF score is found to be inappropriate if the underlying data follow a mixed distribution. By providing global similarity maps for each variable under study, regions where reanalysis data should not assumed to be “perfect” are detected. In contrast to the geopotential and temperature, significant distributional dissimilarities for specific humidity are found in almost every region of the world. Moreover, for the latter these differences not only occur in the mean, but also in higher-order moments. However, when considering standardized anomalies, distributional and serial dissimilarities are negligible over most extratropical land areas. Since transformed reanalysis data are not appropriate for regional climate models—in opposition to statistical approaches—their results are expected to be more sensitive to reanalysis choice. |
doi_str_mv | 10.1175/jcli-d-11-00251.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642326381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26191334</jstor_id><sourcerecordid>26191334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-7dc4422e0e89d2691bce735d66d566ad71c2a86fa13c07c9081c1237d66149d03</originalsourceid><addsrcrecordid>eNqFkV1LwzAUhoMoOKc_wAuhKII3mTlJkzSXsvkxGQzEXYeYptrStTPpkP17UzcUBPHqHDjP-54vhE6BjAAkv65sXeIcA2BCKIcR7KEBcEowSVO6jwYkUynOJOeH6CiEihCggpABwvMm6d5csgguaYvkyZnG1JtQhmRiOpMUrU8m7UcTrKnL5vUYHRSmDu5kF4docXf7PH7As_n9dHwzw5ZT2WGZ29iVOuIylVOh4MU6yXguRM6FMLkES00mCgPMEmkVycACZTICkKqcsCG62vqufPu-dqHTyzJYV9emce06aBApZVSwDP5HU1AsjsB5RM9_oVW79nHfoJWiSnAaLYfo4i-IZpAyqZTsu8KWsr4NwbtCr3y5NH6jgej-IfpxPJvqScz110N0r7ncOZv-nIU3jS3Dt5ByKWR0j9zZlqtC1_qfugAFjKXsE9wVkHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814379971</pqid></control><display><type>article</type><title>On the Use of Reanalysis Data for Downscaling</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Brands, S. ; Gutiérrez, J. M. ; Herrera, S. ; Cofiño, A. S.</creator><creatorcontrib>Brands, S. ; Gutiérrez, J. M. ; Herrera, S. ; Cofiño, A. S.</creatorcontrib><description>In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice is provided. To this end, the similarity of middle-tropospheric variables—which are important for the development of both dynamical and statistical downscaling schemes—from 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR reanalysis data on a daily time scale is assessed. For estimating the distributional similarity, two comparable scores are used: the two-sample Kolmogorov–Smirnov statistic and the probability density function (PDF) score. In addition, the similarity of the day-to-day sequences is evaluated with the Pearson correlation coefficient. As the most important results demonstrated, the PDF score is found to be inappropriate if the underlying data follow a mixed distribution. By providing global similarity maps for each variable under study, regions where reanalysis data should not assumed to be “perfect” are detected. In contrast to the geopotential and temperature, significant distributional dissimilarities for specific humidity are found in almost every region of the world. Moreover, for the latter these differences not only occur in the mean, but also in higher-order moments. However, when considering standardized anomalies, distributional and serial dissimilarities are negligible over most extratropical land areas. Since transformed reanalysis data are not appropriate for regional climate models—in opposition to statistical approaches—their results are expected to be more sensitive to reanalysis choice.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-11-00251.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Agreements ; Anomalies ; Atmospheric sciences ; Boundary conditions ; Climate ; Climate change ; Climate models ; Climatic zones ; Climatology ; Correlation coefficient ; Correlation coefficients ; Correlations ; Datasets ; Dynamic height ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geopotential ; Global climate models ; Humidity ; Hypotheses ; Hypothesis testing ; Meteorology ; Oceans ; Probability density function ; Probability density functions ; Probability theory ; Regional climate models ; Regional climates ; Sequences ; Similarity ; Specific humidity ; Statistical analysis ; Statistics ; Studies ; Time series ; Tropical climates ; Variables ; Weather ; Weather forecasting</subject><ispartof>Journal of climate, 2012-04, Vol.25 (7), p.2517-2526</ispartof><rights>2012 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2012</rights><rights>Copyright American Meteorological Society Apr 1, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-7dc4422e0e89d2691bce735d66d566ad71c2a86fa13c07c9081c1237d66149d03</citedby><cites>FETCH-LOGICAL-c527t-7dc4422e0e89d2691bce735d66d566ad71c2a86fa13c07c9081c1237d66149d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26191334$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26191334$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25767799$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brands, S.</creatorcontrib><creatorcontrib>Gutiérrez, J. M.</creatorcontrib><creatorcontrib>Herrera, S.</creatorcontrib><creatorcontrib>Cofiño, A. S.</creatorcontrib><title>On the Use of Reanalysis Data for Downscaling</title><title>Journal of climate</title><description>In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice is provided. To this end, the similarity of middle-tropospheric variables—which are important for the development of both dynamical and statistical downscaling schemes—from 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR reanalysis data on a daily time scale is assessed. For estimating the distributional similarity, two comparable scores are used: the two-sample Kolmogorov–Smirnov statistic and the probability density function (PDF) score. In addition, the similarity of the day-to-day sequences is evaluated with the Pearson correlation coefficient. As the most important results demonstrated, the PDF score is found to be inappropriate if the underlying data follow a mixed distribution. By providing global similarity maps for each variable under study, regions where reanalysis data should not assumed to be “perfect” are detected. In contrast to the geopotential and temperature, significant distributional dissimilarities for specific humidity are found in almost every region of the world. Moreover, for the latter these differences not only occur in the mean, but also in higher-order moments. However, when considering standardized anomalies, distributional and serial dissimilarities are negligible over most extratropical land areas. Since transformed reanalysis data are not appropriate for regional climate models—in opposition to statistical approaches—their results are expected to be more sensitive to reanalysis choice.</description><subject>Agreements</subject><subject>Anomalies</subject><subject>Atmospheric sciences</subject><subject>Boundary conditions</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic zones</subject><subject>Climatology</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Correlations</subject><subject>Datasets</subject><subject>Dynamic height</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geopotential</subject><subject>Global climate models</subject><subject>Humidity</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Meteorology</subject><subject>Oceans</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Regional climate models</subject><subject>Regional climates</subject><subject>Sequences</subject><subject>Similarity</subject><subject>Specific humidity</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Studies</subject><subject>Time series</subject><subject>Tropical climates</subject><subject>Variables</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV1LwzAUhoMoOKc_wAuhKII3mTlJkzSXsvkxGQzEXYeYptrStTPpkP17UzcUBPHqHDjP-54vhE6BjAAkv65sXeIcA2BCKIcR7KEBcEowSVO6jwYkUynOJOeH6CiEihCggpABwvMm6d5csgguaYvkyZnG1JtQhmRiOpMUrU8m7UcTrKnL5vUYHRSmDu5kF4docXf7PH7As_n9dHwzw5ZT2WGZ29iVOuIylVOh4MU6yXguRM6FMLkES00mCgPMEmkVycACZTICkKqcsCG62vqufPu-dqHTyzJYV9emce06aBApZVSwDP5HU1AsjsB5RM9_oVW79nHfoJWiSnAaLYfo4i-IZpAyqZTsu8KWsr4NwbtCr3y5NH6jgej-IfpxPJvqScz110N0r7ncOZv-nIU3jS3Dt5ByKWR0j9zZlqtC1_qfugAFjKXsE9wVkHM</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Brands, S.</creator><creator>Gutiérrez, J. M.</creator><creator>Herrera, S.</creator><creator>Cofiño, A. S.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TN</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120401</creationdate><title>On the Use of Reanalysis Data for Downscaling</title><author>Brands, S. ; Gutiérrez, J. M. ; Herrera, S. ; Cofiño, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-7dc4422e0e89d2691bce735d66d566ad71c2a86fa13c07c9081c1237d66149d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agreements</topic><topic>Anomalies</topic><topic>Atmospheric sciences</topic><topic>Boundary conditions</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic zones</topic><topic>Climatology</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Correlations</topic><topic>Datasets</topic><topic>Dynamic height</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geopotential</topic><topic>Global climate models</topic><topic>Humidity</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Meteorology</topic><topic>Oceans</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Regional climate models</topic><topic>Regional climates</topic><topic>Sequences</topic><topic>Similarity</topic><topic>Specific humidity</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Studies</topic><topic>Time series</topic><topic>Tropical climates</topic><topic>Variables</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brands, S.</creatorcontrib><creatorcontrib>Gutiérrez, J. M.</creatorcontrib><creatorcontrib>Herrera, S.</creatorcontrib><creatorcontrib>Cofiño, A. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brands, S.</au><au>Gutiérrez, J. M.</au><au>Herrera, S.</au><au>Cofiño, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Use of Reanalysis Data for Downscaling</atitle><jtitle>Journal of climate</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>25</volume><issue>7</issue><spage>2517</spage><epage>2526</epage><pages>2517-2526</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice is provided. To this end, the similarity of middle-tropospheric variables—which are important for the development of both dynamical and statistical downscaling schemes—from 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR reanalysis data on a daily time scale is assessed. For estimating the distributional similarity, two comparable scores are used: the two-sample Kolmogorov–Smirnov statistic and the probability density function (PDF) score. In addition, the similarity of the day-to-day sequences is evaluated with the Pearson correlation coefficient. As the most important results demonstrated, the PDF score is found to be inappropriate if the underlying data follow a mixed distribution. By providing global similarity maps for each variable under study, regions where reanalysis data should not assumed to be “perfect” are detected. In contrast to the geopotential and temperature, significant distributional dissimilarities for specific humidity are found in almost every region of the world. Moreover, for the latter these differences not only occur in the mean, but also in higher-order moments. However, when considering standardized anomalies, distributional and serial dissimilarities are negligible over most extratropical land areas. Since transformed reanalysis data are not appropriate for regional climate models—in opposition to statistical approaches—their results are expected to be more sensitive to reanalysis choice.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-11-00251.1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2012-04, Vol.25 (7), p.2517-2526 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642326381 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agreements Anomalies Atmospheric sciences Boundary conditions Climate Climate change Climate models Climatic zones Climatology Correlation coefficient Correlation coefficients Correlations Datasets Dynamic height Earth, ocean, space Exact sciences and technology External geophysics Geopotential Global climate models Humidity Hypotheses Hypothesis testing Meteorology Oceans Probability density function Probability density functions Probability theory Regional climate models Regional climates Sequences Similarity Specific humidity Statistical analysis Statistics Studies Time series Tropical climates Variables Weather Weather forecasting |
title | On the Use of Reanalysis Data for Downscaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Use%20of%20Reanalysis%20Data%20for%20Downscaling&rft.jtitle=Journal%20of%20climate&rft.au=Brands,%20S.&rft.date=2012-04-01&rft.volume=25&rft.issue=7&rft.spage=2517&rft.epage=2526&rft.pages=2517-2526&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-11-00251.1&rft_dat=%3Cjstor_proqu%3E26191334%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814379971&rft_id=info:pmid/&rft_jstor_id=26191334&rfr_iscdi=true |