Fluid transport by individual microswimmers

We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer $\rho $ decreases, the tracer is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2013-07, Vol.726, p.5-25
Hauptverfasser: Pushkin, Dmitri O., Shum, Henry, Yeomans, Julia M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue
container_start_page 5
container_title Journal of fluid mechanics
container_volume 726
creator Pushkin, Dmitri O.
Shum, Henry
Yeomans, Julia M.
description We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer $\rho $ decreases, the tracer is displaced a small distance backwards (relative to the direction of the swimmer velocity). For much smaller tracer–swimmer separations, however, the tracer displacement becomes positive and diverges as $\rho \rightarrow 0$ . To quantify this behaviour we calculate the Darwin drift, the total volume swept out by a material sheet of tracers, initially perpendicular to the swimmer path, during the swimmer motion. We find that the drift can be written as the sum of a universal term which depends on the quadrupolar flow field of the swimmer, together with a non-universal contribution given by the sum of the volumes of the swimmer and its wake. The formula is compared to exact results for the squirmer model and to numerical calculations for a more realistic model swimmer.
doi_str_mv 10.1017/jfm.2013.208
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642326070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2013_208</cupid><sourcerecordid>2983451911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-7856b81def6bd52d0506efced91157f4164452f62e46b1ccfc4425d8afe15d7d3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZv_oCACIKm7mz2Iz1KsSoUvOg5bPZDtmSTupso_fduaBERwcPMXJ55hnkROgc8Awzidm39jGAoUisP0AQon-eCU3aIJhgTkgMQfIxOYlzjROG5mKDrZTM4nfVBtnHThT6rt5lrtftwepBN5p0KXfx03psQT9GRlU00Z_s5Ra_L-5fFY756fnha3K1yxTDpc1EyXpegjeW1ZkRjhrmxyug5ABOWAqeUEcuJobwGpayilDBdSmuAaaGLKbraeTehex9M7CvvojJNI1vTDbFKAlIQjgX-Hy0E4awQqabo4he67obQpkcSxTinAsqRutlR498xGFttgvMybCvA1RhylUKuxpBTKxN-uZfKqGRjU4zKxe8dIhgIWpLEzfZa6evg9Jv5cf0v8RerdIma</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356647185</pqid></control><display><type>article</type><title>Fluid transport by individual microswimmers</title><source>Cambridge University Press Journals Complete</source><creator>Pushkin, Dmitri O. ; Shum, Henry ; Yeomans, Julia M.</creator><creatorcontrib>Pushkin, Dmitri O. ; Shum, Henry ; Yeomans, Julia M.</creatorcontrib><description>We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer $\rho $ decreases, the tracer is displaced a small distance backwards (relative to the direction of the swimmer velocity). For much smaller tracer–swimmer separations, however, the tracer displacement becomes positive and diverges as $\rho \rightarrow 0$ . To quantify this behaviour we calculate the Darwin drift, the total volume swept out by a material sheet of tracers, initially perpendicular to the swimmer path, during the swimmer motion. We find that the drift can be written as the sum of a universal term which depends on the quadrupolar flow field of the swimmer, together with a non-universal contribution given by the sum of the volumes of the swimmer and its wake. The formula is compared to exact results for the squirmer model and to numerical calculations for a more realistic model swimmer.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2013.208</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Biological and medical sciences ; Cell physiology ; Computational fluid dynamics ; Displacement ; Drift ; Fluid flow ; Fluids ; Fundamental and applied biological sciences. Psychology ; Mathematical models ; Molecular and cellular biology ; Motility and taxis ; Tracers ; Wakes</subject><ispartof>Journal of fluid mechanics, 2013-07, Vol.726, p.5-25</ispartof><rights>2013 Cambridge University Press</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-7856b81def6bd52d0506efced91157f4164452f62e46b1ccfc4425d8afe15d7d3</citedby><cites>FETCH-LOGICAL-c502t-7856b81def6bd52d0506efced91157f4164452f62e46b1ccfc4425d8afe15d7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112013002085/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27517482$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pushkin, Dmitri O.</creatorcontrib><creatorcontrib>Shum, Henry</creatorcontrib><creatorcontrib>Yeomans, Julia M.</creatorcontrib><title>Fluid transport by individual microswimmers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer $\rho $ decreases, the tracer is displaced a small distance backwards (relative to the direction of the swimmer velocity). For much smaller tracer–swimmer separations, however, the tracer displacement becomes positive and diverges as $\rho \rightarrow 0$ . To quantify this behaviour we calculate the Darwin drift, the total volume swept out by a material sheet of tracers, initially perpendicular to the swimmer path, during the swimmer motion. We find that the drift can be written as the sum of a universal term which depends on the quadrupolar flow field of the swimmer, together with a non-universal contribution given by the sum of the volumes of the swimmer and its wake. The formula is compared to exact results for the squirmer model and to numerical calculations for a more realistic model swimmer.</description><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Computational fluid dynamics</subject><subject>Displacement</subject><subject>Drift</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mathematical models</subject><subject>Molecular and cellular biology</subject><subject>Motility and taxis</subject><subject>Tracers</subject><subject>Wakes</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1Lw0AQhhdRsFZv_oCACIKm7mz2Iz1KsSoUvOg5bPZDtmSTupso_fduaBERwcPMXJ55hnkROgc8Awzidm39jGAoUisP0AQon-eCU3aIJhgTkgMQfIxOYlzjROG5mKDrZTM4nfVBtnHThT6rt5lrtftwepBN5p0KXfx03psQT9GRlU00Z_s5Ra_L-5fFY756fnha3K1yxTDpc1EyXpegjeW1ZkRjhrmxyug5ABOWAqeUEcuJobwGpayilDBdSmuAaaGLKbraeTehex9M7CvvojJNI1vTDbFKAlIQjgX-Hy0E4awQqabo4he67obQpkcSxTinAsqRutlR498xGFttgvMybCvA1RhylUKuxpBTKxN-uZfKqGRjU4zKxe8dIhgIWpLEzfZa6evg9Jv5cf0v8RerdIma</recordid><startdate>20130710</startdate><enddate>20130710</enddate><creator>Pushkin, Dmitri O.</creator><creator>Shum, Henry</creator><creator>Yeomans, Julia M.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20130710</creationdate><title>Fluid transport by individual microswimmers</title><author>Pushkin, Dmitri O. ; Shum, Henry ; Yeomans, Julia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-7856b81def6bd52d0506efced91157f4164452f62e46b1ccfc4425d8afe15d7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Computational fluid dynamics</topic><topic>Displacement</topic><topic>Drift</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mathematical models</topic><topic>Molecular and cellular biology</topic><topic>Motility and taxis</topic><topic>Tracers</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pushkin, Dmitri O.</creatorcontrib><creatorcontrib>Shum, Henry</creatorcontrib><creatorcontrib>Yeomans, Julia M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pushkin, Dmitri O.</au><au>Shum, Henry</au><au>Yeomans, Julia M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid transport by individual microswimmers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2013-07-10</date><risdate>2013</risdate><volume>726</volume><spage>5</spage><epage>25</epage><pages>5-25</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer $\rho $ decreases, the tracer is displaced a small distance backwards (relative to the direction of the swimmer velocity). For much smaller tracer–swimmer separations, however, the tracer displacement becomes positive and diverges as $\rho \rightarrow 0$ . To quantify this behaviour we calculate the Darwin drift, the total volume swept out by a material sheet of tracers, initially perpendicular to the swimmer path, during the swimmer motion. We find that the drift can be written as the sum of a universal term which depends on the quadrupolar flow field of the swimmer, together with a non-universal contribution given by the sum of the volumes of the swimmer and its wake. The formula is compared to exact results for the squirmer model and to numerical calculations for a more realistic model swimmer.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2013.208</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2013-07, Vol.726, p.5-25
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642326070
source Cambridge University Press Journals Complete
subjects Biological and medical sciences
Cell physiology
Computational fluid dynamics
Displacement
Drift
Fluid flow
Fluids
Fundamental and applied biological sciences. Psychology
Mathematical models
Molecular and cellular biology
Motility and taxis
Tracers
Wakes
title Fluid transport by individual microswimmers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20transport%20by%20individual%20microswimmers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Pushkin,%20Dmitri%20O.&rft.date=2013-07-10&rft.volume=726&rft.spage=5&rft.epage=25&rft.pages=5-25&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2013.208&rft_dat=%3Cproquest_cross%3E2983451911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356647185&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2013_208&rfr_iscdi=true