Fluid transport by individual microswimmers
We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer $\rho $ decreases, the tracer is...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2013-07, Vol.726, p.5-25 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | |
container_start_page | 5 |
container_title | Journal of fluid mechanics |
container_volume | 726 |
creator | Pushkin, Dmitri O. Shum, Henry Yeomans, Julia M. |
description | We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer
$\rho $
decreases, the tracer is displaced a small distance backwards (relative to the direction of the swimmer velocity). For much smaller tracer–swimmer separations, however, the tracer displacement becomes positive and diverges as
$\rho \rightarrow 0$
. To quantify this behaviour we calculate the Darwin drift, the total volume swept out by a material sheet of tracers, initially perpendicular to the swimmer path, during the swimmer motion. We find that the drift can be written as the sum of a universal term which depends on the quadrupolar flow field of the swimmer, together with a non-universal contribution given by the sum of the volumes of the swimmer and its wake. The formula is compared to exact results for the squirmer model and to numerical calculations for a more realistic model swimmer. |
doi_str_mv | 10.1017/jfm.2013.208 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642326070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2013_208</cupid><sourcerecordid>2983451911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-7856b81def6bd52d0506efced91157f4164452f62e46b1ccfc4425d8afe15d7d3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZv_oCACIKm7mz2Iz1KsSoUvOg5bPZDtmSTupso_fduaBERwcPMXJ55hnkROgc8Awzidm39jGAoUisP0AQon-eCU3aIJhgTkgMQfIxOYlzjROG5mKDrZTM4nfVBtnHThT6rt5lrtftwepBN5p0KXfx03psQT9GRlU00Z_s5Ra_L-5fFY756fnha3K1yxTDpc1EyXpegjeW1ZkRjhrmxyug5ABOWAqeUEcuJobwGpayilDBdSmuAaaGLKbraeTehex9M7CvvojJNI1vTDbFKAlIQjgX-Hy0E4awQqabo4he67obQpkcSxTinAsqRutlR498xGFttgvMybCvA1RhylUKuxpBTKxN-uZfKqGRjU4zKxe8dIhgIWpLEzfZa6evg9Jv5cf0v8RerdIma</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356647185</pqid></control><display><type>article</type><title>Fluid transport by individual microswimmers</title><source>Cambridge University Press Journals Complete</source><creator>Pushkin, Dmitri O. ; Shum, Henry ; Yeomans, Julia M.</creator><creatorcontrib>Pushkin, Dmitri O. ; Shum, Henry ; Yeomans, Julia M.</creatorcontrib><description>We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer
$\rho $
decreases, the tracer is displaced a small distance backwards (relative to the direction of the swimmer velocity). For much smaller tracer–swimmer separations, however, the tracer displacement becomes positive and diverges as
$\rho \rightarrow 0$
. To quantify this behaviour we calculate the Darwin drift, the total volume swept out by a material sheet of tracers, initially perpendicular to the swimmer path, during the swimmer motion. We find that the drift can be written as the sum of a universal term which depends on the quadrupolar flow field of the swimmer, together with a non-universal contribution given by the sum of the volumes of the swimmer and its wake. The formula is compared to exact results for the squirmer model and to numerical calculations for a more realistic model swimmer.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2013.208</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Biological and medical sciences ; Cell physiology ; Computational fluid dynamics ; Displacement ; Drift ; Fluid flow ; Fluids ; Fundamental and applied biological sciences. Psychology ; Mathematical models ; Molecular and cellular biology ; Motility and taxis ; Tracers ; Wakes</subject><ispartof>Journal of fluid mechanics, 2013-07, Vol.726, p.5-25</ispartof><rights>2013 Cambridge University Press</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-7856b81def6bd52d0506efced91157f4164452f62e46b1ccfc4425d8afe15d7d3</citedby><cites>FETCH-LOGICAL-c502t-7856b81def6bd52d0506efced91157f4164452f62e46b1ccfc4425d8afe15d7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112013002085/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27517482$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pushkin, Dmitri O.</creatorcontrib><creatorcontrib>Shum, Henry</creatorcontrib><creatorcontrib>Yeomans, Julia M.</creatorcontrib><title>Fluid transport by individual microswimmers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer
$\rho $
decreases, the tracer is displaced a small distance backwards (relative to the direction of the swimmer velocity). For much smaller tracer–swimmer separations, however, the tracer displacement becomes positive and diverges as
$\rho \rightarrow 0$
. To quantify this behaviour we calculate the Darwin drift, the total volume swept out by a material sheet of tracers, initially perpendicular to the swimmer path, during the swimmer motion. We find that the drift can be written as the sum of a universal term which depends on the quadrupolar flow field of the swimmer, together with a non-universal contribution given by the sum of the volumes of the swimmer and its wake. The formula is compared to exact results for the squirmer model and to numerical calculations for a more realistic model swimmer.</description><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Computational fluid dynamics</subject><subject>Displacement</subject><subject>Drift</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mathematical models</subject><subject>Molecular and cellular biology</subject><subject>Motility and taxis</subject><subject>Tracers</subject><subject>Wakes</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1Lw0AQhhdRsFZv_oCACIKm7mz2Iz1KsSoUvOg5bPZDtmSTupso_fduaBERwcPMXJ55hnkROgc8Awzidm39jGAoUisP0AQon-eCU3aIJhgTkgMQfIxOYlzjROG5mKDrZTM4nfVBtnHThT6rt5lrtftwepBN5p0KXfx03psQT9GRlU00Z_s5Ra_L-5fFY756fnha3K1yxTDpc1EyXpegjeW1ZkRjhrmxyug5ABOWAqeUEcuJobwGpayilDBdSmuAaaGLKbraeTehex9M7CvvojJNI1vTDbFKAlIQjgX-Hy0E4awQqabo4he67obQpkcSxTinAsqRutlR498xGFttgvMybCvA1RhylUKuxpBTKxN-uZfKqGRjU4zKxe8dIhgIWpLEzfZa6evg9Jv5cf0v8RerdIma</recordid><startdate>20130710</startdate><enddate>20130710</enddate><creator>Pushkin, Dmitri O.</creator><creator>Shum, Henry</creator><creator>Yeomans, Julia M.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20130710</creationdate><title>Fluid transport by individual microswimmers</title><author>Pushkin, Dmitri O. ; Shum, Henry ; Yeomans, Julia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-7856b81def6bd52d0506efced91157f4164452f62e46b1ccfc4425d8afe15d7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Computational fluid dynamics</topic><topic>Displacement</topic><topic>Drift</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mathematical models</topic><topic>Molecular and cellular biology</topic><topic>Motility and taxis</topic><topic>Tracers</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pushkin, Dmitri O.</creatorcontrib><creatorcontrib>Shum, Henry</creatorcontrib><creatorcontrib>Yeomans, Julia M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pushkin, Dmitri O.</au><au>Shum, Henry</au><au>Yeomans, Julia M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid transport by individual microswimmers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2013-07-10</date><risdate>2013</risdate><volume>726</volume><spage>5</spage><epage>25</epage><pages>5-25</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer
$\rho $
decreases, the tracer is displaced a small distance backwards (relative to the direction of the swimmer velocity). For much smaller tracer–swimmer separations, however, the tracer displacement becomes positive and diverges as
$\rho \rightarrow 0$
. To quantify this behaviour we calculate the Darwin drift, the total volume swept out by a material sheet of tracers, initially perpendicular to the swimmer path, during the swimmer motion. We find that the drift can be written as the sum of a universal term which depends on the quadrupolar flow field of the swimmer, together with a non-universal contribution given by the sum of the volumes of the swimmer and its wake. The formula is compared to exact results for the squirmer model and to numerical calculations for a more realistic model swimmer.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2013.208</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2013-07, Vol.726, p.5-25 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642326070 |
source | Cambridge University Press Journals Complete |
subjects | Biological and medical sciences Cell physiology Computational fluid dynamics Displacement Drift Fluid flow Fluids Fundamental and applied biological sciences. Psychology Mathematical models Molecular and cellular biology Motility and taxis Tracers Wakes |
title | Fluid transport by individual microswimmers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20transport%20by%20individual%20microswimmers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Pushkin,%20Dmitri%20O.&rft.date=2013-07-10&rft.volume=726&rft.spage=5&rft.epage=25&rft.pages=5-25&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2013.208&rft_dat=%3Cproquest_cross%3E2983451911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356647185&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2013_208&rfr_iscdi=true |