A hybrid model for daily peak load power forecasting based on SAMBA and neural network

According to the significance of power load demand forecasting, this paper suggests a new hybrid method to reach more accurate model with fast response. The proposed model consists of two algorithms: Self Adaptive Modified Bat Algorithm (SAMBA) and Artificial Neural Network (ANN). In recent years, S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2014, Vol.27 (2), p.913-920
Hauptverfasser: Germi, Masoud Bakhshi, Mirjavadi, Mohammad, Namin, Aghil Seyed Sadeghi, Baziar, Aliasghar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 920
container_issue 2
container_start_page 913
container_title Journal of intelligent & fuzzy systems
container_volume 27
creator Germi, Masoud Bakhshi
Mirjavadi, Mohammad
Namin, Aghil Seyed Sadeghi
Baziar, Aliasghar
description According to the significance of power load demand forecasting, this paper suggests a new hybrid method to reach more accurate model with fast response. The proposed model consists of two algorithms: Self Adaptive Modified Bat Algorithm (SAMBA) and Artificial Neural Network (ANN). In recent years, SAMBA has been used as a powerful tool in the optimization problems. On the other hand among the most popular methods, ANN has shown powerful performance in load prediction as the result of its ability to detect nonlinear mappings among different variables. In addition, the special ability of SAMBA in fast convergence, its low dependency to setting parameters and simple implementation make this algorithm more premiere than the other optimization algorithms. Therefore, in this paper for the first time we use SAMBA to regulate the weight matrix of ANN and optimize the degree of uncertainty which exist in load demand prediction.
doi_str_mv 10.3233/IFS-131049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642324503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642324503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-b9a38538611754db312747cbf9e12589c55d26f6d71a4166b6db3d0cae37491a3</originalsourceid><addsrcrecordid>eNotkLFOwzAURT2ARCksfIFHhBTwsx2nGUNFoVIRQ4HVerEdCHXjYKeq-vekKtMd7tHV1SHkBti94EI8LBfrDAQwWZ6RCTAlM-BSXZDLlH4YgyLnbEI-K_p9qGNr6TZY52kTIrXY-gPtHW6oD2hpH_YuHhtnMA1t90VrTM7S0NF19fpYUews7dwuoh9j2Ie4uSLnDfrkrv9zSj4WT-_zl2z19rycV6vMcCWHrC5RzHIxUzDekbYWwAtZmLopHfB8Vpo8t1w1yhaAEpSq1chYZtCJQpaAYkpuT7t9DL87lwa9bZNx3mPnwi5pUJILLnMmRvTuhJoYUoqu0X1stxgPGpg-CtOjMH0SJv4AeMdeHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642324503</pqid></control><display><type>article</type><title>A hybrid model for daily peak load power forecasting based on SAMBA and neural network</title><source>EBSCOhost Business Source Complete</source><creator>Germi, Masoud Bakhshi ; Mirjavadi, Mohammad ; Namin, Aghil Seyed Sadeghi ; Baziar, Aliasghar</creator><creatorcontrib>Germi, Masoud Bakhshi ; Mirjavadi, Mohammad ; Namin, Aghil Seyed Sadeghi ; Baziar, Aliasghar</creatorcontrib><description>According to the significance of power load demand forecasting, this paper suggests a new hybrid method to reach more accurate model with fast response. The proposed model consists of two algorithms: Self Adaptive Modified Bat Algorithm (SAMBA) and Artificial Neural Network (ANN). In recent years, SAMBA has been used as a powerful tool in the optimization problems. On the other hand among the most popular methods, ANN has shown powerful performance in load prediction as the result of its ability to detect nonlinear mappings among different variables. In addition, the special ability of SAMBA in fast convergence, its low dependency to setting parameters and simple implementation make this algorithm more premiere than the other optimization algorithms. Therefore, in this paper for the first time we use SAMBA to regulate the weight matrix of ANN and optimize the degree of uncertainty which exist in load demand prediction.</description><identifier>ISSN: 1064-1246</identifier><identifier>DOI: 10.3233/IFS-131049</identifier><language>eng</language><subject>Algorithms ; Convergence ; Demand ; Forecasting ; Learning theory ; Mathematical models ; Neural networks ; Optimization</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2014, Vol.27 (2), p.913-920</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-b9a38538611754db312747cbf9e12589c55d26f6d71a4166b6db3d0cae37491a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Germi, Masoud Bakhshi</creatorcontrib><creatorcontrib>Mirjavadi, Mohammad</creatorcontrib><creatorcontrib>Namin, Aghil Seyed Sadeghi</creatorcontrib><creatorcontrib>Baziar, Aliasghar</creatorcontrib><title>A hybrid model for daily peak load power forecasting based on SAMBA and neural network</title><title>Journal of intelligent &amp; fuzzy systems</title><description>According to the significance of power load demand forecasting, this paper suggests a new hybrid method to reach more accurate model with fast response. The proposed model consists of two algorithms: Self Adaptive Modified Bat Algorithm (SAMBA) and Artificial Neural Network (ANN). In recent years, SAMBA has been used as a powerful tool in the optimization problems. On the other hand among the most popular methods, ANN has shown powerful performance in load prediction as the result of its ability to detect nonlinear mappings among different variables. In addition, the special ability of SAMBA in fast convergence, its low dependency to setting parameters and simple implementation make this algorithm more premiere than the other optimization algorithms. Therefore, in this paper for the first time we use SAMBA to regulate the weight matrix of ANN and optimize the degree of uncertainty which exist in load demand prediction.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Demand</subject><subject>Forecasting</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Optimization</subject><issn>1064-1246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURT2ARCksfIFHhBTwsx2nGUNFoVIRQ4HVerEdCHXjYKeq-vekKtMd7tHV1SHkBti94EI8LBfrDAQwWZ6RCTAlM-BSXZDLlH4YgyLnbEI-K_p9qGNr6TZY52kTIrXY-gPtHW6oD2hpH_YuHhtnMA1t90VrTM7S0NF19fpYUews7dwuoh9j2Ie4uSLnDfrkrv9zSj4WT-_zl2z19rycV6vMcCWHrC5RzHIxUzDekbYWwAtZmLopHfB8Vpo8t1w1yhaAEpSq1chYZtCJQpaAYkpuT7t9DL87lwa9bZNx3mPnwi5pUJILLnMmRvTuhJoYUoqu0X1stxgPGpg-CtOjMH0SJv4AeMdeHQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Germi, Masoud Bakhshi</creator><creator>Mirjavadi, Mohammad</creator><creator>Namin, Aghil Seyed Sadeghi</creator><creator>Baziar, Aliasghar</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2014</creationdate><title>A hybrid model for daily peak load power forecasting based on SAMBA and neural network</title><author>Germi, Masoud Bakhshi ; Mirjavadi, Mohammad ; Namin, Aghil Seyed Sadeghi ; Baziar, Aliasghar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-b9a38538611754db312747cbf9e12589c55d26f6d71a4166b6db3d0cae37491a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Demand</topic><topic>Forecasting</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Germi, Masoud Bakhshi</creatorcontrib><creatorcontrib>Mirjavadi, Mohammad</creatorcontrib><creatorcontrib>Namin, Aghil Seyed Sadeghi</creatorcontrib><creatorcontrib>Baziar, Aliasghar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Germi, Masoud Bakhshi</au><au>Mirjavadi, Mohammad</au><au>Namin, Aghil Seyed Sadeghi</au><au>Baziar, Aliasghar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid model for daily peak load power forecasting based on SAMBA and neural network</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2014</date><risdate>2014</risdate><volume>27</volume><issue>2</issue><spage>913</spage><epage>920</epage><pages>913-920</pages><issn>1064-1246</issn><abstract>According to the significance of power load demand forecasting, this paper suggests a new hybrid method to reach more accurate model with fast response. The proposed model consists of two algorithms: Self Adaptive Modified Bat Algorithm (SAMBA) and Artificial Neural Network (ANN). In recent years, SAMBA has been used as a powerful tool in the optimization problems. On the other hand among the most popular methods, ANN has shown powerful performance in load prediction as the result of its ability to detect nonlinear mappings among different variables. In addition, the special ability of SAMBA in fast convergence, its low dependency to setting parameters and simple implementation make this algorithm more premiere than the other optimization algorithms. Therefore, in this paper for the first time we use SAMBA to regulate the weight matrix of ANN and optimize the degree of uncertainty which exist in load demand prediction.</abstract><doi>10.3233/IFS-131049</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2014, Vol.27 (2), p.913-920
issn 1064-1246
language eng
recordid cdi_proquest_miscellaneous_1642324503
source EBSCOhost Business Source Complete
subjects Algorithms
Convergence
Demand
Forecasting
Learning theory
Mathematical models
Neural networks
Optimization
title A hybrid model for daily peak load power forecasting based on SAMBA and neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20model%20for%20daily%20peak%20load%20power%20forecasting%20based%20on%20SAMBA%20and%20neural%20network&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Germi,%20Masoud%20Bakhshi&rft.date=2014&rft.volume=27&rft.issue=2&rft.spage=913&rft.epage=920&rft.pages=913-920&rft.issn=1064-1246&rft_id=info:doi/10.3233/IFS-131049&rft_dat=%3Cproquest_cross%3E1642324503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642324503&rft_id=info:pmid/&rfr_iscdi=true