A hybrid model for daily peak load power forecasting based on SAMBA and neural network
According to the significance of power load demand forecasting, this paper suggests a new hybrid method to reach more accurate model with fast response. The proposed model consists of two algorithms: Self Adaptive Modified Bat Algorithm (SAMBA) and Artificial Neural Network (ANN). In recent years, S...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2014, Vol.27 (2), p.913-920 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 920 |
---|---|
container_issue | 2 |
container_start_page | 913 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 27 |
creator | Germi, Masoud Bakhshi Mirjavadi, Mohammad Namin, Aghil Seyed Sadeghi Baziar, Aliasghar |
description | According to the significance of power load demand forecasting, this paper suggests a new hybrid method to reach more accurate model with fast response. The proposed model consists of two algorithms: Self Adaptive Modified Bat Algorithm (SAMBA) and Artificial Neural Network (ANN). In recent years, SAMBA has been used as a powerful tool in the optimization problems. On the other hand among the most popular methods, ANN has shown powerful performance in load prediction as the result of its ability to detect nonlinear mappings among different variables. In addition, the special ability of SAMBA in fast convergence, its low dependency to setting parameters and simple implementation make this algorithm more premiere than the other optimization algorithms. Therefore, in this paper for the first time we use SAMBA to regulate the weight matrix of ANN and optimize the degree of uncertainty which exist in load demand prediction. |
doi_str_mv | 10.3233/IFS-131049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642324503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642324503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-b9a38538611754db312747cbf9e12589c55d26f6d71a4166b6db3d0cae37491a3</originalsourceid><addsrcrecordid>eNotkLFOwzAURT2ARCksfIFHhBTwsx2nGUNFoVIRQ4HVerEdCHXjYKeq-vekKtMd7tHV1SHkBti94EI8LBfrDAQwWZ6RCTAlM-BSXZDLlH4YgyLnbEI-K_p9qGNr6TZY52kTIrXY-gPtHW6oD2hpH_YuHhtnMA1t90VrTM7S0NF19fpYUews7dwuoh9j2Ie4uSLnDfrkrv9zSj4WT-_zl2z19rycV6vMcCWHrC5RzHIxUzDekbYWwAtZmLopHfB8Vpo8t1w1yhaAEpSq1chYZtCJQpaAYkpuT7t9DL87lwa9bZNx3mPnwi5pUJILLnMmRvTuhJoYUoqu0X1stxgPGpg-CtOjMH0SJv4AeMdeHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642324503</pqid></control><display><type>article</type><title>A hybrid model for daily peak load power forecasting based on SAMBA and neural network</title><source>EBSCOhost Business Source Complete</source><creator>Germi, Masoud Bakhshi ; Mirjavadi, Mohammad ; Namin, Aghil Seyed Sadeghi ; Baziar, Aliasghar</creator><creatorcontrib>Germi, Masoud Bakhshi ; Mirjavadi, Mohammad ; Namin, Aghil Seyed Sadeghi ; Baziar, Aliasghar</creatorcontrib><description>According to the significance of power load demand forecasting, this paper suggests a new hybrid method to reach more accurate model with fast response. The proposed model consists of two algorithms: Self Adaptive Modified Bat Algorithm (SAMBA) and Artificial Neural Network (ANN). In recent years, SAMBA has been used as a powerful tool in the optimization problems. On the other hand among the most popular methods, ANN has shown powerful performance in load prediction as the result of its ability to detect nonlinear mappings among different variables. In addition, the special ability of SAMBA in fast convergence, its low dependency to setting parameters and simple implementation make this algorithm more premiere than the other optimization algorithms. Therefore, in this paper for the first time we use SAMBA to regulate the weight matrix of ANN and optimize the degree of uncertainty which exist in load demand prediction.</description><identifier>ISSN: 1064-1246</identifier><identifier>DOI: 10.3233/IFS-131049</identifier><language>eng</language><subject>Algorithms ; Convergence ; Demand ; Forecasting ; Learning theory ; Mathematical models ; Neural networks ; Optimization</subject><ispartof>Journal of intelligent & fuzzy systems, 2014, Vol.27 (2), p.913-920</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-b9a38538611754db312747cbf9e12589c55d26f6d71a4166b6db3d0cae37491a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Germi, Masoud Bakhshi</creatorcontrib><creatorcontrib>Mirjavadi, Mohammad</creatorcontrib><creatorcontrib>Namin, Aghil Seyed Sadeghi</creatorcontrib><creatorcontrib>Baziar, Aliasghar</creatorcontrib><title>A hybrid model for daily peak load power forecasting based on SAMBA and neural network</title><title>Journal of intelligent & fuzzy systems</title><description>According to the significance of power load demand forecasting, this paper suggests a new hybrid method to reach more accurate model with fast response. The proposed model consists of two algorithms: Self Adaptive Modified Bat Algorithm (SAMBA) and Artificial Neural Network (ANN). In recent years, SAMBA has been used as a powerful tool in the optimization problems. On the other hand among the most popular methods, ANN has shown powerful performance in load prediction as the result of its ability to detect nonlinear mappings among different variables. In addition, the special ability of SAMBA in fast convergence, its low dependency to setting parameters and simple implementation make this algorithm more premiere than the other optimization algorithms. Therefore, in this paper for the first time we use SAMBA to regulate the weight matrix of ANN and optimize the degree of uncertainty which exist in load demand prediction.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Demand</subject><subject>Forecasting</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Optimization</subject><issn>1064-1246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURT2ARCksfIFHhBTwsx2nGUNFoVIRQ4HVerEdCHXjYKeq-vekKtMd7tHV1SHkBti94EI8LBfrDAQwWZ6RCTAlM-BSXZDLlH4YgyLnbEI-K_p9qGNr6TZY52kTIrXY-gPtHW6oD2hpH_YuHhtnMA1t90VrTM7S0NF19fpYUews7dwuoh9j2Ie4uSLnDfrkrv9zSj4WT-_zl2z19rycV6vMcCWHrC5RzHIxUzDekbYWwAtZmLopHfB8Vpo8t1w1yhaAEpSq1chYZtCJQpaAYkpuT7t9DL87lwa9bZNx3mPnwi5pUJILLnMmRvTuhJoYUoqu0X1stxgPGpg-CtOjMH0SJv4AeMdeHQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Germi, Masoud Bakhshi</creator><creator>Mirjavadi, Mohammad</creator><creator>Namin, Aghil Seyed Sadeghi</creator><creator>Baziar, Aliasghar</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2014</creationdate><title>A hybrid model for daily peak load power forecasting based on SAMBA and neural network</title><author>Germi, Masoud Bakhshi ; Mirjavadi, Mohammad ; Namin, Aghil Seyed Sadeghi ; Baziar, Aliasghar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-b9a38538611754db312747cbf9e12589c55d26f6d71a4166b6db3d0cae37491a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Demand</topic><topic>Forecasting</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Germi, Masoud Bakhshi</creatorcontrib><creatorcontrib>Mirjavadi, Mohammad</creatorcontrib><creatorcontrib>Namin, Aghil Seyed Sadeghi</creatorcontrib><creatorcontrib>Baziar, Aliasghar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Germi, Masoud Bakhshi</au><au>Mirjavadi, Mohammad</au><au>Namin, Aghil Seyed Sadeghi</au><au>Baziar, Aliasghar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid model for daily peak load power forecasting based on SAMBA and neural network</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2014</date><risdate>2014</risdate><volume>27</volume><issue>2</issue><spage>913</spage><epage>920</epage><pages>913-920</pages><issn>1064-1246</issn><abstract>According to the significance of power load demand forecasting, this paper suggests a new hybrid method to reach more accurate model with fast response. The proposed model consists of two algorithms: Self Adaptive Modified Bat Algorithm (SAMBA) and Artificial Neural Network (ANN). In recent years, SAMBA has been used as a powerful tool in the optimization problems. On the other hand among the most popular methods, ANN has shown powerful performance in load prediction as the result of its ability to detect nonlinear mappings among different variables. In addition, the special ability of SAMBA in fast convergence, its low dependency to setting parameters and simple implementation make this algorithm more premiere than the other optimization algorithms. Therefore, in this paper for the first time we use SAMBA to regulate the weight matrix of ANN and optimize the degree of uncertainty which exist in load demand prediction.</abstract><doi>10.3233/IFS-131049</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2014, Vol.27 (2), p.913-920 |
issn | 1064-1246 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642324503 |
source | EBSCOhost Business Source Complete |
subjects | Algorithms Convergence Demand Forecasting Learning theory Mathematical models Neural networks Optimization |
title | A hybrid model for daily peak load power forecasting based on SAMBA and neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20model%20for%20daily%20peak%20load%20power%20forecasting%20based%20on%20SAMBA%20and%20neural%20network&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Germi,%20Masoud%20Bakhshi&rft.date=2014&rft.volume=27&rft.issue=2&rft.spage=913&rft.epage=920&rft.pages=913-920&rft.issn=1064-1246&rft_id=info:doi/10.3233/IFS-131049&rft_dat=%3Cproquest_cross%3E1642324503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642324503&rft_id=info:pmid/&rfr_iscdi=true |