Protein secondary structure prediction: efficient neural network and feature extraction approaches
A simple and efficient approach to the protein secondary structure prediction problem is presented and evaluated with four established measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are applied to the raw data and also features extracted with the PCA and the ICA methods. The res...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2004-10, Vol.40 (21), p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 21 |
container_start_page | 1 |
container_title | Electronics letters |
container_volume | 40 |
creator | de Melo, J C B Cavalcanti, G D C Guimarães, K S |
description | A simple and efficient approach to the protein secondary structure prediction problem is presented and evaluated with four established measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are applied to the raw data and also features extracted with the PCA and the ICA methods. The results obtained are better than any predictor trained in similar conditions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642323094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3489842701</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-545194cf3382d4211e7edd717428e308b4fdf21dd5e513815d3a5ec888077f93</originalsourceid><addsrcrecordid>eNpdjstKAzEYhYMoWKvvEHDjZiDXJnEnxUuhoKALdyVN_uDUMRlzQX17x-rK1eHAdy4HaEa5JJ2h9PkQzQihvJPUiGN0UspusswYNUPbh5wq9BEXcCl6m79wqbm52jLgMYPvXe1TvMQQQu96iBVHaNkOk9SPlF-xjR4HsPsAfNZs9wFsxzEn616gnKKjYIcCZ386R48310_Lu259f7taXq27cUFFJ8XPOxc418wLRiko8F5RJZgGTvRWBB8Y9V6CpFxT6bmV4LTWRKlg-Bxd_LZOs-8NSt289cXBMNgIqZUNXQjGGSdGTOj5P3SXWo7Tt4lijAimlOHfb0lgzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622042779</pqid></control><display><type>article</type><title>Protein secondary structure prediction: efficient neural network and feature extraction approaches</title><source>Alma/SFX Local Collection</source><creator>de Melo, J C B ; Cavalcanti, G D C ; Guimarães, K S</creator><creatorcontrib>de Melo, J C B ; Cavalcanti, G D C ; Guimarães, K S</creatorcontrib><description>A simple and efficient approach to the protein secondary structure prediction problem is presented and evaluated with four established measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are applied to the raw data and also features extracted with the PCA and the ICA methods. The results obtained are better than any predictor trained in similar conditions.</description><identifier>ISSN: 0013-5194</identifier><identifier>EISSN: 1350-911X</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: John Wiley & Sons, Inc</publisher><subject>Feature extraction ; Neural networks ; Proteins ; Raw</subject><ispartof>Electronics letters, 2004-10, Vol.40 (21), p.1-1</ispartof><rights>Copyright The Institution of Engineering & Technology Oct 14, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>de Melo, J C B</creatorcontrib><creatorcontrib>Cavalcanti, G D C</creatorcontrib><creatorcontrib>Guimarães, K S</creatorcontrib><title>Protein secondary structure prediction: efficient neural network and feature extraction approaches</title><title>Electronics letters</title><description>A simple and efficient approach to the protein secondary structure prediction problem is presented and evaluated with four established measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are applied to the raw data and also features extracted with the PCA and the ICA methods. The results obtained are better than any predictor trained in similar conditions.</description><subject>Feature extraction</subject><subject>Neural networks</subject><subject>Proteins</subject><subject>Raw</subject><issn>0013-5194</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjstKAzEYhYMoWKvvEHDjZiDXJnEnxUuhoKALdyVN_uDUMRlzQX17x-rK1eHAdy4HaEa5JJ2h9PkQzQihvJPUiGN0UspusswYNUPbh5wq9BEXcCl6m79wqbm52jLgMYPvXe1TvMQQQu96iBVHaNkOk9SPlF-xjR4HsPsAfNZs9wFsxzEn616gnKKjYIcCZ386R48310_Lu259f7taXq27cUFFJ8XPOxc418wLRiko8F5RJZgGTvRWBB8Y9V6CpFxT6bmV4LTWRKlg-Bxd_LZOs-8NSt289cXBMNgIqZUNXQjGGSdGTOj5P3SXWo7Tt4lijAimlOHfb0lgzw</recordid><startdate>20041014</startdate><enddate>20041014</enddate><creator>de Melo, J C B</creator><creator>Cavalcanti, G D C</creator><creator>Guimarães, K S</creator><general>John Wiley & Sons, Inc</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041014</creationdate><title>Protein secondary structure prediction: efficient neural network and feature extraction approaches</title><author>de Melo, J C B ; Cavalcanti, G D C ; Guimarães, K S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-545194cf3382d4211e7edd717428e308b4fdf21dd5e513815d3a5ec888077f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Feature extraction</topic><topic>Neural networks</topic><topic>Proteins</topic><topic>Raw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Melo, J C B</creatorcontrib><creatorcontrib>Cavalcanti, G D C</creatorcontrib><creatorcontrib>Guimarães, K S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Melo, J C B</au><au>Cavalcanti, G D C</au><au>Guimarães, K S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein secondary structure prediction: efficient neural network and feature extraction approaches</atitle><jtitle>Electronics letters</jtitle><date>2004-10-14</date><risdate>2004</risdate><volume>40</volume><issue>21</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0013-5194</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>A simple and efficient approach to the protein secondary structure prediction problem is presented and evaluated with four established measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are applied to the raw data and also features extracted with the PCA and the ICA methods. The results obtained are better than any predictor trained in similar conditions.</abstract><cop>Stevenage</cop><pub>John Wiley & Sons, Inc</pub><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2004-10, Vol.40 (21), p.1-1 |
issn | 0013-5194 1350-911X |
language | eng |
recordid | cdi_proquest_miscellaneous_1642323094 |
source | Alma/SFX Local Collection |
subjects | Feature extraction Neural networks Proteins Raw |
title | Protein secondary structure prediction: efficient neural network and feature extraction approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20secondary%20structure%20prediction:%20efficient%20neural%20network%20and%20feature%20extraction%20approaches&rft.jtitle=Electronics%20letters&rft.au=de%20Melo,%20J%20C%20B&rft.date=2004-10-14&rft.volume=40&rft.issue=21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/&rft_dat=%3Cproquest%3E3489842701%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622042779&rft_id=info:pmid/&rfr_iscdi=true |