Protein secondary structure prediction: efficient neural network and feature extraction approaches

A simple and efficient approach to the protein secondary structure prediction problem is presented and evaluated with four established measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are applied to the raw data and also features extracted with the PCA and the ICA methods. The res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2004-10, Vol.40 (21), p.1-1
Hauptverfasser: de Melo, J C B, Cavalcanti, G D C, Guimarães, K S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 21
container_start_page 1
container_title Electronics letters
container_volume 40
creator de Melo, J C B
Cavalcanti, G D C
Guimarães, K S
description A simple and efficient approach to the protein secondary structure prediction problem is presented and evaluated with four established measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are applied to the raw data and also features extracted with the PCA and the ICA methods. The results obtained are better than any predictor trained in similar conditions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642323094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3489842701</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-545194cf3382d4211e7edd717428e308b4fdf21dd5e513815d3a5ec888077f93</originalsourceid><addsrcrecordid>eNpdjstKAzEYhYMoWKvvEHDjZiDXJnEnxUuhoKALdyVN_uDUMRlzQX17x-rK1eHAdy4HaEa5JJ2h9PkQzQihvJPUiGN0UspusswYNUPbh5wq9BEXcCl6m79wqbm52jLgMYPvXe1TvMQQQu96iBVHaNkOk9SPlF-xjR4HsPsAfNZs9wFsxzEn616gnKKjYIcCZ386R48310_Lu259f7taXq27cUFFJ8XPOxc418wLRiko8F5RJZgGTvRWBB8Y9V6CpFxT6bmV4LTWRKlg-Bxd_LZOs-8NSt289cXBMNgIqZUNXQjGGSdGTOj5P3SXWo7Tt4lijAimlOHfb0lgzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622042779</pqid></control><display><type>article</type><title>Protein secondary structure prediction: efficient neural network and feature extraction approaches</title><source>Alma/SFX Local Collection</source><creator>de Melo, J C B ; Cavalcanti, G D C ; Guimarães, K S</creator><creatorcontrib>de Melo, J C B ; Cavalcanti, G D C ; Guimarães, K S</creatorcontrib><description>A simple and efficient approach to the protein secondary structure prediction problem is presented and evaluated with four established measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are applied to the raw data and also features extracted with the PCA and the ICA methods. The results obtained are better than any predictor trained in similar conditions.</description><identifier>ISSN: 0013-5194</identifier><identifier>EISSN: 1350-911X</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: John Wiley &amp; Sons, Inc</publisher><subject>Feature extraction ; Neural networks ; Proteins ; Raw</subject><ispartof>Electronics letters, 2004-10, Vol.40 (21), p.1-1</ispartof><rights>Copyright The Institution of Engineering &amp; Technology Oct 14, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>de Melo, J C B</creatorcontrib><creatorcontrib>Cavalcanti, G D C</creatorcontrib><creatorcontrib>Guimarães, K S</creatorcontrib><title>Protein secondary structure prediction: efficient neural network and feature extraction approaches</title><title>Electronics letters</title><description>A simple and efficient approach to the protein secondary structure prediction problem is presented and evaluated with four established measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are applied to the raw data and also features extracted with the PCA and the ICA methods. The results obtained are better than any predictor trained in similar conditions.</description><subject>Feature extraction</subject><subject>Neural networks</subject><subject>Proteins</subject><subject>Raw</subject><issn>0013-5194</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjstKAzEYhYMoWKvvEHDjZiDXJnEnxUuhoKALdyVN_uDUMRlzQX17x-rK1eHAdy4HaEa5JJ2h9PkQzQihvJPUiGN0UspusswYNUPbh5wq9BEXcCl6m79wqbm52jLgMYPvXe1TvMQQQu96iBVHaNkOk9SPlF-xjR4HsPsAfNZs9wFsxzEn616gnKKjYIcCZ386R48310_Lu259f7taXq27cUFFJ8XPOxc418wLRiko8F5RJZgGTvRWBB8Y9V6CpFxT6bmV4LTWRKlg-Bxd_LZOs-8NSt289cXBMNgIqZUNXQjGGSdGTOj5P3SXWo7Tt4lijAimlOHfb0lgzw</recordid><startdate>20041014</startdate><enddate>20041014</enddate><creator>de Melo, J C B</creator><creator>Cavalcanti, G D C</creator><creator>Guimarães, K S</creator><general>John Wiley &amp; Sons, Inc</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041014</creationdate><title>Protein secondary structure prediction: efficient neural network and feature extraction approaches</title><author>de Melo, J C B ; Cavalcanti, G D C ; Guimarães, K S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-545194cf3382d4211e7edd717428e308b4fdf21dd5e513815d3a5ec888077f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Feature extraction</topic><topic>Neural networks</topic><topic>Proteins</topic><topic>Raw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Melo, J C B</creatorcontrib><creatorcontrib>Cavalcanti, G D C</creatorcontrib><creatorcontrib>Guimarães, K S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Melo, J C B</au><au>Cavalcanti, G D C</au><au>Guimarães, K S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein secondary structure prediction: efficient neural network and feature extraction approaches</atitle><jtitle>Electronics letters</jtitle><date>2004-10-14</date><risdate>2004</risdate><volume>40</volume><issue>21</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0013-5194</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>A simple and efficient approach to the protein secondary structure prediction problem is presented and evaluated with four established measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are applied to the raw data and also features extracted with the PCA and the ICA methods. The results obtained are better than any predictor trained in similar conditions.</abstract><cop>Stevenage</cop><pub>John Wiley &amp; Sons, Inc</pub><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-5194
ispartof Electronics letters, 2004-10, Vol.40 (21), p.1-1
issn 0013-5194
1350-911X
language eng
recordid cdi_proquest_miscellaneous_1642323094
source Alma/SFX Local Collection
subjects Feature extraction
Neural networks
Proteins
Raw
title Protein secondary structure prediction: efficient neural network and feature extraction approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20secondary%20structure%20prediction:%20efficient%20neural%20network%20and%20feature%20extraction%20approaches&rft.jtitle=Electronics%20letters&rft.au=de%20Melo,%20J%20C%20B&rft.date=2004-10-14&rft.volume=40&rft.issue=21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/&rft_dat=%3Cproquest%3E3489842701%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622042779&rft_id=info:pmid/&rfr_iscdi=true